Reputation: 189
I have a numpy array like
arr1 = np.array([1,1,1,1,0,0,1,1,1,0,0,0,1,1])
arr2 = np.array([1,1,1,1,0,0,0,1,1,1,1,1,1,1])
0
-water
1
-land
I want to find the index of the island with water surrounding it.
For example in the arr1
water starts at index 4
and island index 6
to 8
is surrounded by two water strip. So the answer for arr1
is
[4,5,6,7,8,9,10,11]
but in the second case there is not land surrounded by water, so no output.
Upvotes: 1
Views: 893
Reputation: 80279
The following approach pads the array with a one at the start and the end. And calculates the differences: these are -1
when going from water to land, 1
when going from land to water, and 0
everywhere else.
The following code constructs a series of test cases and visualizes the function. It can serve as a test bed for different definitions of the desired outcome.
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
def find_islands(arr):
d = np.diff(np.pad(arr, pad_width=(1, 1), constant_values=1))
land_starts, = np.nonzero(d == 1)
land_ends, = np.nonzero(d == -1)
if len(land_starts) > 1 and len(land_ends) > 1:
return np.arange(arr.size)[land_ends[0]: land_starts[-1]]
else:
return None
def show_array(arr, y, color0='skyblue', color1='limegreen'):
if arr is not None:
plt.imshow(arr[np.newaxis, :], cmap=ListedColormap([color0, color1]), vmin=0, vmax=1,
extent=[0, arr.size, y, y + 2])
def mark_array(arr, y, color0='none', color1='crimson'):
if arr is not None:
pix = np.zeros(arr[-1] + 1)
pix[arr] = 1
show_array(pix, y, color0, color1)
tests = [np.array([1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1]),
np.array([1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]),
np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]),
np.array([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1]),
np.array([1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
np.array([1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0]),
np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0]),
np.array([0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0]),
np.array([1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0])]
for arr, y in zip(tests, range(0, 1000, 5)):
show_array(arr, y + 2)
result = find_islands(arr)
mark_array(result, y)
ax = plt.gca()
ax.relim()
ax.autoscale()
ax.axis('auto')
plt.show()
Upvotes: 1