Reputation: 169
I was programming on CodeCademy and got stuck. I cant find the answer and the terminal is showing some strange stuff. The project is about classifing images of covid-19, Pneumonia and normal lungs. Hope you can help me.
Code:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import layers
import matplotlib.pyplot as plt
import app
training_generator = ImageDataGenerator(rescale = 1./255)
training_iterator = training_generator.flow_from_directory("augmented-data/train", class_mode='categorical',color_mode='grayscale', batch_size=5)
validation_generator = ImageDataGenerator(rescale = 1./255)
validation_iterator = validation_generator.flow_from_directory("augmented-data/test", class_mode='categorical',color_mode='grayscale', batch_size=5)
model = Sequential()
model.add(tf.keras.Input(shape=training_iterator.image_shape))
model.add(tf.keras.layers.Conv2D(8, 3, strides = 2, activation = "relu"))
model.add(tf.keras.layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)))
model.add(tf.keras.layers.Conv2D(8, 3, strides = 2, activation = "relu"))
model.add(tf.keras.layers.MaxPooling2D(pool_size = (2, 2), strides = (2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(16, activation = "relu"))
model.add(tf.keras.layers.Dense(4, activation = "relu"))
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = 0.01), loss = tf.keras.losses.CategoricalCrossentropy(), metrics = [tf.keras.metrics.CategoricalAccuracy(),tf.keras.metrics.AUC()])
model.fit(training_iterator, steps_per_epoch = training_iterator.samples / 5, epochs = 5, validation_data = validation_iterator, validation_steps = validation_iterator.samples / 5)
Error:
Traceback (most recent call last):
File "script.py", line 31, in <module>
model.fit(training_iterator, steps_per_epoch = training_iterator.samples / 5, epochs = 5, validation_data = validation_iterator, validation_steps = validation_iterator.samples / 5)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py", line 66, in _method_wrapper
return method(self, *args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py", line 848, in fit
tmp_logs = train_function(iterator)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py", line 580, in __call__
result = self._call(*args, **kwds)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py", line 644, in _call
return self._stateless_fn(*args, **kwds)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 2420, in __call__
return graph_function._filtered_call(args, kwargs) # pylint: disable=protected-access
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 1665, in _filtered_call
self.captured_inputs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 1746, in _call_flat
ctx, args, cancellation_manager=cancellation_manager))
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py", line 598, in call
ctx=ctx)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py", line 60, in quick_execute
inputs, attrs, num_outputs)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [5,3] vs. [5,4]
[[node categorical_crossentropy/mul (defined at script.py:31) ]] [Op:__inference_train_function_1137]
Function call stack:
train_function
Upvotes: 0
Views: 134
Reputation: 5079
The project is about classifing images of covid-19, Pneumonia and normal lungs.
As you stated, you have 3 classes, but in the last dense layer, your output layer has 4 neurons, which is incompatible, also having 'relu'
as activation, which is another mistake.
You should change last dense layer to:
model.add(tf.keras.layers.Dense(3, activation = tf.nn.softmax))
Upvotes: 1
Reputation: 69
Your data does not match your model architecture
Incompatible shapes: [5,3] vs. [5,4]
To debug these types of errors, try adding the run_eagerly=False
parameter to your model.compile
function; the errors become a little more readable.
https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
Upvotes: 0