Reputation: 65
I am trying to implement an std::unordered_map
that returns pairs of either double
, int
or std::string
. The keys for the map are std::string
s. Below is what I have tried so far:
#include <fstream>
#include <iostream>
#include <string>
#include <sstream>
#include <unordered_map>
#include <utility>
#include <vector>
// A base class for boundary class
class Boundbase {
public:
Boundbase(){};
virtual ~Boundbase(){};
};
// A different map of boundaries for each different data type
template <class dType>
class Boundary : public Boundbase {
std::pair<dType, dType> bpair;
public:
//Constructor
Boundary(const std::string &lbound,
const std::string &ubound) {
setbound(lbound, ubound);
};
//A method to set boundary pair
void setbound(const std::string &lbound,
const std::string &ubound);
// A method to get boundary pair
std::pair<dType, dType> getbound() {return bpair;}
};
// Class to hold the different boundaries
class Boundaries {
std::unordered_map<std::string, Boundbase*> bounds;
public:
//Constructor
Boundaries() {};
// A method to set boundary map
void setboundmap(std::unordered_map<std::string,
std::vector<std::string>> xtb);
// A template to get boundaries.
std::unordered_map<std::string, Boundbase*> getbounds()
{return bounds;}
};
// A method to set covariate boundary
template <class dType> void
Boundary<dType>::setbound(const std::string &lbound,
const std::string &ubound) {
dType val;
std::istringstream isa(lbound);
while(isa >> val) {
bpair.first = val;
}
std::istringstream isb(ubound);
while(isb >> val) {
bpair.second = val;
}
}
// A method to set boundary map
void Boundaries::setboundmap(std::unordered_map<std::string,
std::vector<std::string>> xtb) {
for(auto s : xtb) {
char type = s.second[1][0];
switch(type) {
case 'd': {
std::pair<std::string, Boundbase*> opair;
opair.first = s.first;
opair.second = new Boundary<double>(
s.second[2], s.second[3]);
bounds.insert(opair);
}
break;
case 'i': {
std::pair<std::string, Boundbase*> opair;
opair.first = s.first;
opair.second = new Boundary<int>(
s.second[2], s.second[3]);
bounds.insert(opair);
break;
}
case 'c': {
std::pair<std::string, Boundbase*> opair;
opair.first = s.first;
opair.second = new Boundary<std::string>(
s.second[2], s.second[2]);
bounds.insert(opair);
break;
}
}
}
}
This compiles ok using g++. When I try to run it though ( as follows):
int main() {
Data D;
Boundaries B;
std::ifstream iss("tphinit.txt");
D.read_lines(iss);
auto dbounds = D.get_xtypebound();
B.setboundmap(dbounds);
auto tbounds = B.getbounds();
auto sbound = tbounds["X1"];
std::cout << sbound->bpair.first << ","
<< sbound->bpair.second << std::endl;
}
I get 'class Boundbase' has no member named 'bpair'
which is true because I am pointing to the base class and not the derived class. As far as I can tell, trying to get the derived member bpair
requires that I use the visitor pattern. Now, it is clear that I am noob so when I had a look at different ways of doing this on SO I was a little in over my head (no reflection on the authors, just on my inexperience).
So my main question is: Is this the best and simplest way to go about this? I would like to avoid boost::variant
if at all possible (mainly for the sake of purity: this cannot be that difficult). A sub-question is whether I have to use the visitor pattern or is there a better/simpler way to get the member pbair
?
I will have to perform this lookup many times so I am hoping to make it as fast as possible but using the stl
for the sake of simplicity.
Upvotes: 1
Views: 340
Reputation: 275385
Make your values std variants over the 3 types.
Failing that, boost variant.
Std and boost variant really are what you want. You'll end up implementing some subset of its implementation.
Failing that, find a tutorial on how to implement ones of them, or use std any. Failing that, dynamic casts around an otherwise useless wrapper type with a virtual dtor stored in a unique ptr, or do manual RTTI with try get methods.
This just gets increasingly ugly and/or inefficient however.
Boost variant, and std variant from it, was implemented for a reason, and that reason was solving the exact problem you are describing in an efficient manner.
#include <tuple>
#include <utility>
#include <string>
template<class...Ts>
struct destroy_helper {
std::tuple<Ts*...> data;
destroy_helper( std::tuple<Ts*...> d ):data(d){}
template<class T>
static void destroy(T* t){ t->~T(); }
template<std::size_t I>
void operator()(std::integral_constant<std::size_t, I>)const {
destroy( std::get<I>( data ) );
}
};
struct construct_helper {
template<class T, class...Args>
void operator()(T* target, Args&&...args)const {
::new( (void*)target ) T(std::forward<Args>(args)...);
}
};
template<std::size_t...Is>
struct indexes {};
template<std::size_t N, std::size_t...Is>
struct make_indexes:make_indexes<N-1, N-1, Is...> {};
template<std::size_t...Is>
struct make_indexes<0, Is...>{
using type=indexes<Is...>;
};
template<std::size_t N>
using make_indexes_t = typename make_indexes<N>::type;
template<class F>
void magic_switch( std::size_t i, indexes<>, F&& f ) {}
template<std::size_t I0, std::size_t...Is, class F>
void magic_switch( std::size_t i, indexes<I0,Is...>, F&& f )
{
if (i==I0) {
f( std::integral_constant<std::size_t, I0>{} );
return;
}
magic_switch( i, indexes<Is...>{}, std::forward<F>(f) );
}
template<class T0>
constexpr T0 max_of( T0 t0 ) {
return t0;
}
template<class T0, class T1, class...Ts>
constexpr T0 max_of( T0 t0, T1 t1, Ts... ts ) {
return (t1 > t0)?max_of(t1, ts...):max_of(t0, ts...);
}
template<class...Ts>
struct Variant{
using Data=typename std::aligned_storage< max_of(sizeof(Ts)...), max_of(alignof(Ts)...)>::type;
std::size_t m_index=-1;
Data m_data;
template<std::size_t I>
using alternative_t=typename std::tuple_element<I, std::tuple<Ts...>>::type;
using pointers=std::tuple<Ts*...>;
using cpointers=std::tuple<Ts const*...>;
template<class T> T& get(){ return *reinterpret_cast<T*>(&m_data); }
template<class T> T const& get() const { return *reinterpret_cast<T*>(&m_data); }
template<std::size_t I>
alternative_t<I>& get(){ return std::get<I>(get_pointers()); }
template<std::size_t I>
alternative_t<I> const& get()const{ return std::get<I>(get_pointers()); }
pointers get_pointers(){
return pointers( (Ts*)&m_data... );
}
cpointers get_pointers()const{
return cpointers( (Ts const*)&m_data... );
}
std::size_t alternative()const{return m_index;}
void destroy() {
if (m_index == -1)
return;
magic_switch(m_index, make_indexes_t<sizeof...(Ts)>{}, destroy_helper<Ts...>(get_pointers()));
}
template<std::size_t I, class...Args>
void emplace(Args&&...args) {
destroy();
construct_helper{}( std::get<I>(get_pointers()), std::forward<Args>(args)... );
m_index = I;
}
Variant()=default;
Variant(Variant const&)=delete;//todo
Variant&operator=(Variant const&)=delete;//todo
Variant(Variant &&)=delete;//todo
Variant&operator=(Variant &&)=delete;//todo
~Variant(){destroy();}
};
int main() {
Variant<int, double, std::string> bob;
bob.emplace<0>( 7 );
bob.emplace<1>( 3.14 );
bob.emplace<2>( "hello world" );
}
here is a really simple variant interface.
The hard part is turning a runtime index into which of the compile time indexes you want to use. I call that the magic switch problem.
You might also want to implement apply visitor.
...
Or...
template<class T>
struct Derived;
struct Base {
virtual ~Base() {}
template<class T>
friend T* get(Base* base) {
Derived<T>* self = dynamic_cast<T*>(base);
return self?&self.t:nullptr;
}
template<class T>
friend T const* get(Base const* base) {
Derived<T> const* self = dynamic_cast<T const*>(base);
return self?&self.t:nullptr;
}
};
template<class T>
struct Derived:Base {
Derived(T in):t(std::move(in)){}
T t;
};
std::unordered_map<std::string, std::unique_ptr<Base>> map;
map["hello"] = std::unique_ptr<Base>( new Derived<int>(-1) );
map["world"] = std::unique_ptr<Base>( new Derived<double>(3.14) );
int* phello = get<int>(map["hello"]);
if (phello) std::cout << *hello << "\n";
double* pworld = get<double>(map["world"]);
if (pworld) std::cout << *world << "\n";
which is a seriously bargain-basement std::any
.
Upvotes: 4