Reputation: 516
I am trying to extract data from a txt file (see a sample text below) using python. Take into account that the title can be in one single line, split into two lines or even split with a blank line in the middle (TITLE1).
What I would like to achieve is to extract the information to store in a table like this:
Code | Title | Opening date | Deadline | Budget |
---|---|---|---|---|
TITLE-SDFSD-DFDS-SFDS-01-01 | This is the title 1 that is split in two lines with a blank line in the middle | 15-Apr-21 | 26-Aug-21 | EUR 20.00 million |
TITLE-SDFSD-DFDS-SFDS-01-02 | This is the title2 in one single line | 15-Mar-21 | 17-Aug-21 | EUR 15.00 million |
TITLE-SDFSD-DFDS-SFDS-01-03 | This is the title3 that is too long and takes two lines | 15-May-21 | 26-Sep-21 | EUR 5.00 million |
I manage to identify the "codes titles" with this piece of code:
import re
with open('doubt2.txt','r', encoding="utf-8") as f:
f_contents = f.read()
pattern = re.compile(r'TITLE-.+-[0-9]{2}-[0-9]{2}(?!,)\S{1}')
matches = pattern.finditer(f_contents)
for match in matches:
print(match)
And I get this result:
<re.Match object; span=(160, 188), match='TITLE-SDFSD-DFDS-SFDS-01-01:'>
<re.Match object; span=(669, 697), match='TITLE-SDFSD-DFDS-SFDS-01-02;'>
<re.Match object; span=(1066, 1094), match='TITLE-SDFSD-DFDS-SFDS-01-03:'>
My doubt is how to get the information that I identified with the regular expression and extract the rest of the data. Can you help me, please?
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam id diam posuere, eleifend diam at, condimentum justo. Pellentesque mollis a diam id consequat.
TITLE-SDFSD-DFDS-SFDS-01-01: This is the title 1 that
is split into two lines with a blank line in the middle
Conditions Pellentesque blandit scelerisque pellentesque. Sed nec quam purus. Quisque nec tellus sed neque accumsan lacinia sit amet sit amet tellus. Etiam venenatis nibh vel pellentesque elementum. Nullam eget tortor quam. Morbi sed leo et arcu aliquet luctus.
Opening date 15 Apr 2021
Deadline 26 Aug 2021
Indicative budget: The total indicative budget for the topic is EUR 20.00 million.
TITLE-SDFSD-DFDS-SFDS-01-02; This is the title2 in one single line
Conditions Cras egestas consectetur sapien at dignissim. Maecenas commodo purus nibh, a tempus augue vestibulum feugiat. Vestibulum dolor neque, sagittis ut tortor et, lobortis faucibus quam.
Opening date 15 March 2021
Deadline 17 Aug 2021
Indicative budget: The total indicative budget for the topic is EUR 15.00 million.
TITLE-SDFSD-DFDS-SFDS-01-03: This is the title3 that is too long and takes two lines
Conditions Cras egestas consectetur sapien at dignissim. Maecenas commodo purus nibh, a tempus augue vestibulum feugiat. Vestibulum dolor neque, sagittis ut tortor et, lobortis faucibus quam.
Opening date 15 May 2021
Deadline 26 Sep 2021
Indicative budget: The total indicative budget for the topic is EUR 5.00 million.
Upvotes: 2
Views: 726
Reputation: 782693
Use a regular expression with capturing groups. USe the re.DOTALL
flag to allow .*
to match across multiple lines, so you can capture multi-line titles. And use lazy quantifiers to avoid the matches being too long.
import csv
import re
pattern = re.compile(r'^(TITLE-.+?-\d{2}-\d{2})\S*\s*(.*?)^Conditions.*?^Opening date (\d{1,2} \w+ \d{4})\s*?^Deadline (\d{1,2} \w+ \d{4})\s*^Indicative budget:.*?(EUR [\d.]+ \w+)', re.MULTILINE | re.DOTALL)
matches = pattern.finditer(f_contents)
with open("result.csv", "w") as outfile:
csvfile = csv.writer(outfile)
csvfile.writerow(['Code', 'Title', 'Opening date', 'Deadline', 'Budget'])
for match in matches:
csvfile.writerow([match.group(1), match.group(2).replace('\n', ' '), match.group(3), match.group(4), match.group(5)])
Upvotes: 2
Reputation: 163632
You could get the matches using capture groups.
Note that you can write (?!,)\S
as [^\s,]
Based on the lines in the example:
^(TITLE-.+?-[0-9]{2}-[0-9]{2})[^\s,] (.*(?:\r?\n(?![A-Z]).*)*)(?:\r?\n(?!Opening).*)*\r?\nOpening date (\d+ .*)(?:\r?\n(?!Deadline).*)*\r?\nDeadline (\d+ .*)(?:\r?\n(?!Indicative budget:).*)*\r?\nIndicative budget: .*?(EUR \d+(?:\.\d+)? \w+)
Explanation
^
Start of string(TITLE-.+?-[0-9]{2}-[0-9]{2})
Capture group 1, match the title part[^\s,]
Match any non whitespace char except a comma(.*(?:\r?\n(?![A-Z]).*)*)
Capture group 2, match all lines that do not start with an uppercase char(?:\r?\n(?!Opening).*)*\r?\nOpening date
Match all lines till Opening date(\d+ .*)
Capture group 3, match 1+ digits, a space and the rest of the line(?:\r?\n(?!Deadline).*)*\r?\nDeadline
Match all lines until Deadline(\d+ .*)
Capture group 4, match 1+ digits and the rest of the line(?:\r?\n(?!Indicative budget:).*)*\r?\nIndicative budget: .*?
Match all lines until Indicative budget:(EUR \d+(?:\.\d+)? \w+)
Capture group 5, match EUR, the number and 1+ word charactersThen you could for example load it in a table or dataframe
with open('doubt2.txt','r', encoding="utf-8") as f:
f_contents = f.read()
pattern = re.compile(r"^(TITLE-.+?-[0-9]{2}-[0-9]{2})[^\s,] (.*(?:\r?\n(?![A-Z]).*)*)(?:\r?\n(?!Opening).*)*\r?\nOpening date (\d+ .*)(?:\r?\n(?!Deadline).*)*\r?\nDeadline (\d+ .*)(?:\r?\n(?!Indicative budget:).*)*\r?\nIndicative budget: .*?(EUR \d+(?:\.\d+)? \w+)", re.MULTILINE)
matches = pattern.findall(f_contents)
df = pd.DataFrame(matches, columns = ['Code', 'Title', 'Opening date', 'Deadline', 'Budget'])
df['Title'] = df['Title'].str.replace('[\r\n]+',' ')
print(df)
Output
Code Title Opening date Deadline Budget
0 TITLE-SDFS... This is th... 15 Apr 2021 26 Aug 2021 EUR 20.00 ...
1 TITLE-SDFS... This is th... 15 March 2021 17 Aug 2021 EUR 15.00 ...
2 TITLE-SDFS... This is th... 15 May 2021 26 Sep 2021 EUR 5.00 m...
Upvotes: 1