Reputation: 414
I have implemented an autoencoder in Pytorch and wish to extract the representations (output) from a specified encoding layer. This setup is similar to making predictions using sub-models that we used to have in Keras.
However, implementing something similar in Pytorch looks a bit challenging. I tried forward hooks as explained in How to get the output from a specific layer from a PyTorch model? and https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html but to no avail.
Could you help me getting outputs from a specific layer?
I have attached my code below:
class Autoencoder(torch.nn.Module):
# Now defining the encoding and decoding layers.
def __init__(self):
super().__init__()
self.enc1 = torch.nn.Linear(in_features = 784, out_features = 256)
self.enc2 = torch.nn.Linear(in_features = 256, out_features = 128)
self.enc3 = torch.nn.Linear(in_features = 128, out_features = 64)
self.enc4 = torch.nn.Linear(in_features = 64, out_features = 32)
self.enc5 = torch.nn.Linear(in_features = 32, out_features = 16)
self.dec1 = torch.nn.Linear(in_features = 16, out_features = 32)
self.dec2 = torch.nn.Linear(in_features = 32, out_features = 64)
self.dec3 = torch.nn.Linear(in_features = 64, out_features = 128)
self.dec4 = torch.nn.Linear(in_features = 128, out_features = 256)
self.dec5 = torch.nn.Linear(in_features = 256, out_features = 784)
# Now defining the forward propagation step
def forward(self,x):
x = F.relu(self.enc1(x))
x = F.relu(self.enc2(x))
x = F.relu(self.enc3(x))
x = F.relu(self.enc4(x))
x = F.relu(self.enc5(x))
x = F.relu(self.dec1(x))
x = F.relu(self.dec2(x))
x = F.relu(self.dec3(x))
x = F.relu(self.dec4(x))
x = F.relu(self.dec5(x))
return x
autoencoder_network = Autoencoder()
I have to take the output from encoder layers marked enc1, enc2 .., enc5.
Upvotes: 0
Views: 1821
Reputation: 987
You can define a global dictionary, like activations = {}
, then in the forward
function just assign values to it, like activations['enc1'] = x.clone().detach()
and so on.
Upvotes: 0
Reputation: 114786
The simplest way is to explicitly return the activations you need:
def forward(self,x):
e1 = F.relu(self.enc1(x))
e2 = F.relu(self.enc2(e1))
e3 = F.relu(self.enc3(e2))
e4 = F.relu(self.enc4(e3))
e5 = F.relu(self.enc5(e4))
x = F.relu(self.dec1(e5))
x = F.relu(self.dec2(x))
x = F.relu(self.dec3(x))
x = F.relu(self.dec4(x))
x = F.relu(self.dec5(x))
return x, e1, e2, e3, e4, e5
Upvotes: 1