Reputation: 43
I have a pandas DataFrame with 3 columns: col1 contains lists, col2 contains dictionaries, and col3 contains NaNs:
dict_ = {'col1': [['abc'], ['def', 'ghi'], []],
'col2': [{'k1': 'v1', 'k2': 'v2'},
{'k1': 'v3', 'k2': 'v4'},
{'k1': 'v5', 'k2': 'v6'}],
'col3': [np.nan, np.nan, np.nan]}
df = pd.DataFrame(dict_)
Uploading the DataFrame to BigQuery I create the following schema for the first and second columns:
schema = [
bigquery.SchemaField(name="col1", field_type="STRING", mode='REPEATED'),
bigquery.SchemaField(name="col2", field_type="RECORD", mode='NULLABLE',
fields=[bigquery.SchemaField(name="k1", field_type="STRING", mode='NULLABLE'),
bigquery.SchemaField(name="k2", field_type="STRING", mode='NULLABLE')])
]
job_config = bigquery.LoadJobConfig(write_disposition="WRITE_TRUNCATE", schema=schema)
job = client.load_table_from_dataframe(df, table, job_config=job_config)
job.result()
The DataFrame was uploaded, but the col1 is empty.
What should I do to fix this?
Upvotes: 4
Views: 4855
Reputation: 14786
The load_table_from_dataframe
method in Python client library for BigQuery serializes a DataFrame to Parquet. Unfortunately the BigQuery backend has limited support for the array data type.
As a workaround, I recommend the insert_rows_from_dataframe method.
import pandas as pd
import numpy as np
from google.cloud import bigquery
dict_ = {'col1': [['abc'], ['def', 'ghi'], []],
'col2': [{'k1': 'v1', 'k2': 'v2'},
{'k1': 'v3', 'k2': 'v4'},
{'k1': 'v5', 'k2': 'v6'}],
'col3': [np.nan, np.nan, np.nan]}
df = pd.DataFrame(dict_)
client = bigquery.Client()
schema = [
bigquery.SchemaField(name="col1", field_type="STRING", mode='REPEATED'),
bigquery.SchemaField(name="col2", field_type="RECORD", mode='NULLABLE',
fields=[bigquery.SchemaField(name="k1", field_type="STRING", mode='NULLABLE'),
bigquery.SchemaField(name="k2", field_type="STRING", mode='NULLABLE')])
]
table = bigquery.Table(
"my-project.my_dataset.stackoverflow66054651",
schema=schema
)
client.create_table(table)
errors = client.insert_rows_from_dataframe(table, df)
for chunk in errors:
print(f"encountered {len(chunk)} errors: {chunk}")
loaded_df = client.query(
# Use a query so that data is read from streaming buffer.
"SELECT * FROM `my-project.my_dataset.stackoverflow66054651`"
).to_dataframe()
print(loaded_df)
Resources:
Upvotes: 10