Reputation: 1511
Is there a smart way to shorten very long if-elif-elif-elif...
statements?
Let's say I have a function like this:
def very_long_func():
something = 'Audi'
car = ['VW', 'Audi', 'BMW']
drinks = ['Cola', 'Fanta', 'Pepsi']
countries = ['France', 'Germany', 'Italy']
if something in car:
return {'type':'car brand'}
elif something in drinks:
return {'type':'lemonade brand'}
elif something in countries:
return {'type':'country'}
else:
return {'type':'nothing found'}
very_long_func()
>>>> {'type': 'car brand'}
The actual function is much longer than the example. What would be the best way to write this function (not in terms of speed but in readability)
I was reading this, but I have trouble to apply it to my problem.
Upvotes: 0
Views: 1070
Reputation: 42133
You can simulate a switch statement with a helper function like this:
def switch(v): yield lambda *c: v in c
The your code could be written like this:
something = 'Audi'
for case in switch(something):
if case('VW', 'Audi', 'BMW'): name = 'car brand' ; break
if case('Cola', 'Fanta', 'Pepsi'): name = 'lemonade brand' ; break
if case('France', 'Germany', 'Italy'): name = 'country' ; break
else: name = 'nothing found'
return {'type':name}
If you don't have specific code to do for each value, then a simple mapping dictionary would probably suffice. For ease of maintenance, you can start with a category-list:type-name mapping and expand it before use:
mapping = { ('VW', 'Audi', 'BMW'):'car brand',
('Cola', 'Fanta', 'Pepsi'):'lemonade brand',
('France', 'Germany', 'Italy'):'country' }
mapping = { categ:name for categs,name in mapping.items() for categ in categs }
Then your code will look like this:
something = 'Audi'
return {'type':mapping.get(something,'nothing found')}
using a defaultdict would make this even simpler to use by providing the 'nothing found' value automatically so you could write: return {'type':mapping[something]}
Upvotes: 0
Reputation: 13349
you can create dictionary like this and then use map_dict.
from functools import reduce
car = ['VW', 'Audi', 'BMW']
drinks = ['Cola', 'Fanta', 'Pepsi']
countries = ['France', 'Germany', 'Italy']
li = [car, drinks, countries]
types = ['car brand', 'lemonade brand', 'country', 'nothing found']
dl = [dict(zip(l, [types[idx]]*len(l))) for idx, l in enumerate(li)]
map_dict = reduce(lambda a, b: dict(a, **b), dl)
Upvotes: 2
Reputation: 2804
Try this:
def create_dct(lst, flag):
return {k:flag for k in lst}
car = ['VW', 'Audi', 'BMW']
drinks = ['Cola', 'Fanta', 'Pepsi']
countries = ['France', 'Germany', 'Italy']
merge_dcts = {}
merge_dcts.update(create_dct(car, 'car brand'))
merge_dcts.update(create_dct(drinks, 'lemonade brand'))
merge_dcts.update(create_dct(countries, 'country'))
something = 'Audi'
try:
print("type: ", merge_dcts[something])
except:
print("type: nothing found")
Upvotes: 1
Reputation: 825
You can't hash lists as dictionary values. So go other way round. Create a mapping of type -> list. And initialize your output with the default type. This allows you to keep on adding new types to your mapping without changing any code.
def very_long_func():
something = 'Audi'
car = ['VW', 'Audi', 'BMW']
drinks = ['Cola', 'Fanta', 'Pepsi']
countries = ['France', 'Germany', 'Italy']
out = {'type': 'nothing found'} # If nothing matches
mapping = {
'car brand': car,
'lemonade brand': drinks,
'country': countries
}
for k,v in mapping.items() :
if something in v:
out['type'] = k # update if match found
break
return out # returns matched or default value
Upvotes: 3