Reputation: 3
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.max_pool = nn.MaxPool2d(2)
self.fc1 = nn.Linear(7*7*32, 128)
self.fc1 = nn.Linear(128, 10)
def forward(self, x):
x = self.max_pool(F.relu(self.conv1(x)))
x = self.max_pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.softmax(x, dim=1)
return x
The above is the model. The shape of input image is 1×28×28 with batch_size 16. I tried to print x.shape after flatten, which is (16, 1568), completely corresponding to the input size of self.fc1(). Does anyone have any idea?
Upvotes: 0
Views: 1959
Reputation: 6618
you have named this function nn.Linear(128, 10)
as self.fc1
i.e self.fc1 = nn.Linear(128, 10)
Please change it to self.fc2 = nn.Linear(128, 10)
Upvotes: 1