Reputation: 45
I have two datasets in CSV format that I want to loop through and show results for in one pandas dataframe. Right now my results in df are only showing for the B dataset but if I try to print "data" it shows my two CSV datasets that I have below.
The test CSV datasets are:
Date | fastMA | slowMA | Ticker |
---|---|---|---|
01/01/2021 | 1 | 5 | A |
02/01/2021 | 2 | 5 | A |
03/01/2021 | 4 | 5 | A |
04/01/2021 | 5 | 5 | A |
05/01/2021 | 6 | 5 | A |
06/01/2021 | 7 | 5 | A |
07/01/2021 | 4.5 | 5 | A |
08/01/2021 | 4 | 5 | A |
09/01/2021 | 3 | 5 | A |
Date | fastMA | slowMA | Ticker |
---|---|---|---|
01/01/2021 | 1 | 5 | B |
02/01/2021 | 2 | 5 | B |
03/01/2021 | 4 | 5 | B |
04/01/2021 | 5 | 5 | B |
05/01/2021 | 6 | 5 | B |
06/01/2021 | 7 | 5 | B |
07/01/2021 | 4.5 | 5 | B |
08/01/2021 | 4 | 5 | B |
09/01/2021 | 3 | 5 | B |
ticker = csv.reader(open('gdrive/My Drive/data/test/test_tickers/test_tickers.csv'))
for symbols in ticker:
tickers = symbols
data = pd.read_csv('gdrive/My Drive/data/test/test_data/{}.csv'.format(symbols))
i = 1
j = len(data)
in_trade = 0
dates = []
symbol = []
while i < j:
long = data["fastMA"][i] > data["slowMA"][i]
close = data["fastMA"][i] < data["slowMA"][i]
if long and in_trade == 0:
in_trade = 1
symbol.append(data["Ticker"][i])
dates.append(data["Date"][i])
i += 1
elif long and in_trade == 1:
in_trade = 1
i += 1
elif close and in_trade == 1:
in_trade = 0
i += 1
else:
i += 1
d = {'Date':dates,'Ticker':symbol}
d
df = pd.DataFrame(d, columns=('Date','Ticker'))
df
Do I need to add in something else?
EDIT:
The output I'm getting now in df:
Date | Ticker |
---|---|
05/01/2021 | B |
My desired output in df:
Date | Ticker |
---|---|
05/01/2021 | A |
05/01/2021 | B |
Upvotes: 3
Views: 222
Reputation: 46779
For each ticker
row that is read in, you were blanking dates
and symbol
, they need to be outside of your loop. If you restructure a bit, you should get your desired output:
import csv
import pandas as pd
with open('test_tickers.csv', newline='') as f_tickers:
csv_tickers = csv.reader(f_tickers)
dates = []
symbols = []
for symbol in csv_tickers:
data = pd.read_csv(f'{symbol[0]}.csv')
i = 1
j = len(data)
in_trade = 0
while i < j:
long = data["fastMA"][i] > data["slowMA"][i]
close = data["fastMA"][i] < data["slowMA"][i]
if long and in_trade == 0:
in_trade = 1
symbols.append(data["Ticker"][i])
dates.append(data["Date"][i])
elif long and in_trade == 1:
in_trade = 1
elif close and in_trade == 1:
in_trade = 0
i += 1
d = {'Date' : dates, 'Ticker' : symbols}
df = pd.DataFrame(d, columns=('Date','Ticker'))
print(df)
Giving:
Date Ticker
0 05/01/2021 A
1 05/01/2021 B
(This assumes test_tickers.csv
contains two lines containing A
and B
and the A.csv
and B.csv
contains the data in your question)
Upvotes: 1