josh453
josh453

Reputation: 318

Melt multiple columns pandas dataframe based on criteria

I have a pandas dataframe as follows:

dataframe = pd.DataFrame(
    {
    'ID': [1,2,3,4],
    'Gender': ['F','F','M','M'],
    'Language': ['EN', 'ES', 'EN', 'EN'],
    'Year 1': [2020,2020,2020,2020],
    'Score 1': [93,97,83,86],
    'Year 2': [2020,2020,None,2018],
    'Score 2': [85,95,None,55],
    'Year 3': [2020,2018,None,None],
    'Score 3': [87,86,None,None]
    }
)
ID Gender Language Year 1 Score 1 Year 2 Score 2 Year 3 Score 3
1 F EN 2020 93 2020 85 2020 87
2 F ES 2020 97 2020 95 2018 86
3 M EN 2020 83
4 M EN 2020 86 2018 55

And I would like to melt based on the year and the corresponding scores, for example if any year equals 2020 then the following would be generated:

ID Gender Language Year Score
1 F EN 2020 93
1 F EN 2020 85
1 F EN 2020 87
2 F ES 2020 97
2 F ES 2020 95
3 M EN 2020 83
4 M EN 2020 86

I have tried using pd.melt but am having trouble filtering by the year across the columns and keeping the corresponding entries.

Upvotes: 4

Views: 362

Answers (2)

Jon S
Jon S

Reputation: 175

long_df = (pd.wide_to_long(dataframe, stubnames=["Year","Score"],i="ID", j="Repetition",
                           sep = " ").reset_index())
df_2020 = (long_df[long_df["Year"] == 2020].drop("Repetition",
                                                 axis=1).sort_values("ID").reset_index(drop=True))
print(df_2020)

   ID Gender Language    Year  Score
0   1      F       EN  2020.0   93.0
1   1      F       EN  2020.0   85.0
2   1      F       EN  2020.0   87.0
3   2      F       ES  2020.0   97.0
4   2      F       ES  2020.0   95.0
5   3      M       EN  2020.0   83.0
6   4      M       EN  2020.0   86.0

Upvotes: 0

anky
anky

Reputation: 75080

From what i understand, you may try:

out = (pd.wide_to_long(dataframe,['Year','Score'],['ID','Gender','Language'],'v',' ')
                                               .dropna().droplevel(-1).reset_index())

print(out)

   ID Gender Language    Year  Score
0   1      F       EN  2020.0   93.0
1   1      F       EN  2020.0   85.0
2   1      F       EN  2020.0   87.0
3   2      F       ES  2020.0   97.0
4   2      F       ES  2020.0   95.0
5   2      F       ES  2018.0   86.0
6   3      M       EN  2020.0   83.0
7   4      M       EN  2020.0   86.0
8   4      M       EN  2018.0   55.0

Upvotes: 5

Related Questions