Reputation: 65
I have a graph with relative nodes and edges like this:
what I would like is to find a way to do the shortest_path of networkx only of the nodes included in my list, that is:
source = ["10.0.11.100","10.0.12.100","10.0.13.100","10.0.14.100"]
destination = ["10.0.11.100","10.0.12.100","10.0.13.100","10.0.14.100"]
I would like not to do this by hand, that is:
nx.shortest_path(G, source="10.0.11.100", target="10.0.12.100")
nx.shortest_path(G, source="10.0.11.100", target="10.0.13.100")
nx.shortest_path(G, source="10.0.11.100", target="10.0.14.100")
nx.shortest_path(G, source="10.0.12.100", target="10.0.11.100")
nx.shortest_path(G, source="10.0.12.100", target="10.0.13.100")
nx.shortest_path(G, source="10.0.12.100", target="10.0.14.100")
...
The result I would like looks like this:
[('10.0.12.100','10.0.14.100',['10.0.1.11', '10.0.1.23']), ('10.0.14.100', '10.0.12.100', ['10.0.1.22', '10.0.1.9']), ('10.0.11.100', '10.0.14.100', ['10.0.1.6', '10.0.1.18', '10.0.1.26']), ('10.0.14.100', '10.0.11.100' ,['10.0.1.25', '10.0.1.17', '10.0.1.5'])...]
That is [(Source, Destination, [Path from Source to Destination])]
Is there any way to do this? Thank you very much
This is my code:
import networkx
G = nx.DiGraph()
z = [('10.0.12.100', '10.0.1.1'),('10.0.1.1', '10.0.11.100'),('10.0.11.100', '10.0.1.2'),('10.0.1.2', '10.0.12.100'),('10.0.13.100', '10.0.1.17'),('10.0.1.17', '10.0.1.5'),('10.0.1.5', '10.0.11.100'),('10.0.11.100', '10.0.1.6'),('10.0.1.6', '10.0.1.18'),('10.0.1.18', '10.0.13.100'),('10.0.11.100', '10.0.1.6'),('10.0.1.6', '10.0.1.18'),('10.0.1.18', '10.0.1.26'),('10.0.1.26', '10.0.14.100'),('10.0.14.100', '10.0.1.22'),('10.0.1.22', '10.0.1.9'),('10.0.1.9', '10.0.12.100'),('10.0.12.100', '10.0.1.1'),('10.0.1.1', '10.0.1.6'),('10.0.1.6', '10.0.1.18'),('10.0.1.18', '10.0.13.100'),('10.0.13.100', '10.0.1.26'),('10.0.1.26', '10.0.14.100'),('10.0.13.100', '10.0.1.17'),('10.0.1.17', '10.0.1.5'),('10.0.1.5', '10.0.1.2'),('10.0.1.2', '10.0.12.100'),('10.0.14.100', '10.0.1.25'),('10.0.1.25', '10.0.1.17'),('10.0.1.17', '10.0.1.5'),('10.0.1.5', '10.0.11.100'),('10.0.12.100', '10.0.1.11'),('10.0.1.11', '10.0.1.23'),('10.0.1.23', '10.0.14.100'),('10.0.14.100', '10.0.1.25'),('10.0.1.25', '10.0.13.100')]
G.add_edges_from(z)
random_pos = nx.random_layout(G, seed=42)
pos=nx.spring_layout(G, pos=random_pos)
nx.draw(
G,
pos=pos,
node_color='#FF0000',
with_labels=True,
arrows=False
)
source = ["10.0.11.100","10.0.12.100","10.0.13.100","10.0.14.100"]
destination = ["10.0.11.100","10.0.12.100","10.0.13.100","10.0.14.100"]
list_shortest_path = []
for i in G.nodes(data=True):
DD = list_shortest_path.append(nx.shortest_path(G, source=i[0], target=i[1]))
Upvotes: 1
Views: 737
Reputation: 31
You can use itertools.product and list comprehension.
from itertools import product
list_shortest_path = [(src, dst, nx.shortest_path(G, source=src, target=dst)
for src, dst in product(sources, destinations) if src != dst]
Upvotes: 1
Reputation: 1852
Simply put you can do a double for
loop:
sources = ["10.0.11.100","10.0.12.100","10.0.13.100","10.0.14.100"]
destinations = ["10.0.11.100","10.0.12.100","10.0.13.100","10.0.14.100"]
res = []
for s in sources:
for d in destinations:
res.append((s, d, nx.shortest_path(G, source=s, target=d)))
But this may have some problems for some kind of graphs:
In case of a DiGraph(your case), this should be the solution to go for, since it considers the shortest path from both ends (source to destination is a different path than destination to source).
If you were to use a Graph(without directed edges) the most efficient solution would look similar to @Vanojx1's answer.
Upvotes: 2
Reputation: 5574
Isn't that the combinations of source nodes?
from itertools import combinations
for n1, n2 in combinations(source, 2):
list_shortest_path.append((n1, n2, nx.shortest_path(G, source=n1, target=n2))
Upvotes: 1