Reputation: 2253
I recently did some tests on performance optimization in Python. One part was doing a benchmark on Monte-Carlo Pi calculation using SWIG and compile a library to import in Python. The other solution was using Numba. Now I totally wonder why the native C solution is worse than Numba even if LLVM compiler is used for both. So I'm wondering if I'm doing something wrong.
Runtime on my Laptop
native C module: 7.09 s
Python+Numba: 2.75 s
Native C code
#include "swigtest.h"
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
float monte_carlo_pi(long nsamples)
{
int accGlob=0;
int accLoc=0;
int i,ns;
float x,y;
float res;
float iRMX=1.0/(float) RAND_MAX;
srand(time(NULL));
for(i=0;i<nsamples;i++)
{
x = (float)rand()*iRMX;
y = (float)rand()*iRMX;
if((x*x + y*y) < 1.0) { acc += 1;}
}
res = 4.0 * (float) acc / (float) nsamples;
printf("cres = %.5f\n",res);
return res;
}
swigtest.i
%module swigtest
%{
#define SWIG_FILE_WITH_INIT
#include "swigtest.h"
%}
float monte_carlo_pi(long nsamples);
Compiler call
clang.exe swigtest.c swigtest_wrap.c -Ofast -o _swigtest.pyd -I C:\python37\include -shared -L c:\python37\libs -g0 -mtune=intel -msse4.2 -mmmx
testswig.py
from swigtest import monte_carlo_pi
import time
import os
start = time.time()
pi = monte_carlo_pi(250000000)
print("pi: %.5f" % pi)
print("tm:",time.time()-start)
Python version with Numba
from numba import jit
import random
import time
start = time.time()
@jit(nopython=True,cache=True,fastmath=True)
def monte_carlo_pi(nsamples: int)-> float:
acc:int = 0
for i in range(nsamples):
x:float = random.random()
y:float = random.random()
if (x * x + y * y) < 1.0: acc += 1
return 4.0 * acc / nsamples
pi = monte_carlo_pi(250000000)
print("pi:",pi)
print("tm:",time.time()-start)
Upvotes: 0
Views: 489
Reputation: 2253
Summary up to now:
The rand() function seems to consume most of the time. Using a deterministic approach like this
...
ns = (long) sqrt((double)nsamples)+1;
dx = 1./sqrt((double)nsamples);
dy = dx;
...
for(i=0;i<ns;i++)
for(k=0;k<ns;k++)
{
x = i*dx;
y = k*dy;
if((x*x + y*y) < 1.0) { accLoc += 1;}
}
...
instead of rand() results in an execution tim of only 0.04 s! Obviously Numba uses another much more efficient random function.
Upvotes: 2