Reputation: 7684
I am reading a set of arrow files and am writing them to a parquet file:
import pathlib
from pyarrow import parquet as pq
from pyarrow import feather
import pyarrow as pa
base_path = pathlib.Path('../mydata')
fields = [
pa.field('value', pa.int64()),
pa.field('code', pa.dictionary(pa.int32(), pa.uint64(), ordered=False)),
]
schema = pa.schema(fields)
with pq.ParquetWriter('sample.parquet', schema) as pqwriter:
for file_path in base_path.glob('*.arrow'):
table = feather.read_table(file_path)
pqwriter.write_table(table)
My problem is that the code
field in the arrow files is defined with an int8
index instead of int32
. The range of int8
however is insufficient. Hence I defined a schema with a int32
index for the field code
in the parquet file.
However, writing the arrow table to parquet now complains that the schemas do not match.
How can I change the datatype of the arrow column? I checked the pyarrow API and did not find a way to change the schema. Can this be done without roundtripping to pandas?
Upvotes: 3
Views: 16602
Reputation: 13902
Arrow ChunkedArray has got a cast function, but unfortunately it doesn't work for what you want to do:
>>> table['code'].cast(pa.dictionary(pa.int32(), pa.uint64(), ordered=False))
Unsupported cast from dictionary<values=uint64, indices=int8, ordered=0> to dictionary<values=uint64, indices=int32, ordered=0> (no available cast function for target type)
Instead you can cast to pa.uint64()
and encode it to dictionary:
>>> table['code'].cast(pa.uint64()).dictionary_encode().type
DictionaryType(dictionary<values=uint64, indices=int32, ordered=0>)
Here's a self contained example:
import pyarrow as pa
source_schema = pa.schema([
pa.field('value', pa.int64()),
pa.field('code', pa.dictionary(pa.int8(), pa.uint64(), ordered=False)),
])
source_table = pa.Table.from_arrays([
pa.array([1, 2, 3], pa.int64()),
pa.array([1, 2, 1000], pa.dictionary(pa.int8(), pa.uint64(), ordered=False)),
], schema=source_schema)
destination_schema = pa.schema([
pa.field('value', pa.int64()),
pa.field('code', pa.dictionary(pa.int32(), pa.uint64(), ordered=False)),
])
destination_data = pa.Table.from_arrays([
source_table['value'],
source_table['code'].cast(pa.uint64()).dictionary_encode(),
], schema=destination_schema)
Upvotes: 5