Reputation: 358
To be specific: why can I do this:
FILE *fp = fopen("/proc/self/maps", "r");
char buf[513]; buf[512] = NULL;
while(fgets(buf, 512, fp) > NULL) printf("%s", buf);
but not this:
int fd = open("/proc/self/maps", O_RDONLY);
struct stat s;
fstat(fd, &s); // st_size = 0 -> why?
char *file = mmap(0, s.st_size /*or any fixed size*/, PROT_READ, MAP_PRIVATE, fd, 0); // gives EINVAL for st_size (because 0) and ENODEV for any fixed block
write(1, file, st_size);
I know that /proc files are not really files, but it seems to have some defined size and content for the FILE* version. Is it secretly generating it on-the-fly for read or something? What am I missing here?
EDIT: as I can clearly read() from them, is there any way to get the possible available bytes? or am I stuck to read until EOF?
Upvotes: 4
Views: 2395
Reputation: 141
As already explained by others, /proc
and /sys
are pseudo-filesystems, consisting of data provided by the kernel, that does not really exist until it is read – the kernel generates the data then and there. Since the size varies, and really is unknown until the file is opened for reading, it is not provided to userspace at all.
It is not "unfortunate", however. The same situation occurs very often, for example with character devices (under /dev
), pipes, FIFOs (named pipes), and sockets.
We can trivially write a helper function to read pseudofiles completely, using dynamic memory management. For example:
// SPDX-License-Identifier: CC0-1.0
//
#define _POSIX_C_SOURCE 200809L
#define _ATFILE_SOURCE
#define _GNU_SOURCE
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
/* For example main() */
#include <stdio.h>
/* Return a directory handle for a specific relative directory.
For absolute paths and paths relative to current directory, use dirfd==AT_FDCWD.
*/
int at_dir(const int dirfd, const char *dirpath)
{
if (dirfd == -1 || !dirpath || !*dirpath) {
errno = EINVAL;
return -1;
}
return openat(dirfd, dirpath, O_DIRECTORY | O_PATH | O_CLOEXEC);
}
/* Read the (pseudofile) contents to a dynamically allocated buffer.
For absolute paths and paths relative to current durectory, use dirfd==AT_FDCWD.
You can safely initialize *dataptr=NULL,*sizeptr=0 for dynamic allocation,
or reuse the buffer from a previous call or e.g. getline().
Returns 0 with errno set if an error occurs. If the file is empty, errno==0.
In all cases, remember to free (*dataptr) after it is no longer needed.
*/
size_t read_pseudofile_at(const int dirfd, const char *path, char **dataptr, size_t *sizeptr)
{
char *data;
size_t size, have = 0;
ssize_t n;
int desc;
if (!path || !*path || !dataptr || !sizeptr) {
errno = EINVAL;
return 0;
}
/* Existing dynamic buffer, or a new buffer? */
size = *sizeptr;
if (!size)
*dataptr = NULL;
data = *dataptr;
/* Open pseudofile. */
desc = openat(dirfd, path, O_RDONLY | O_CLOEXEC | O_NOCTTY);
if (desc == -1) {
/* errno set by openat(). */
return 0;
}
while (1) {
/* Need to resize buffer? */
if (have >= size) {
/* For pseudofiles, linear size growth makes most sense. */
size = (have | 4095) + 4097 - 32;
data = realloc(data, size);
if (!data) {
close(desc);
errno = ENOMEM;
return 0;
}
*dataptr = data;
*sizeptr = size;
}
n = read(desc, data + have, size - have);
if (n > 0) {
have += n;
} else
if (n == 0) {
break;
} else
if (n == -1) {
const int saved_errno = errno;
close(desc);
errno = saved_errno;
return 0;
} else {
close(desc);
errno = EIO;
return 0;
}
}
if (close(desc) == -1) {
/* errno set by close(). */
return 0;
}
/* Append zeroes - we know size > have at this point. */
if (have + 32 > size)
memset(data + have, 0, 32);
else
memset(data + have, 0, size - have);
errno = 0;
return have;
}
int main(void)
{
char *data = NULL;
size_t size = 0;
size_t len;
int selfdir;
selfdir = at_dir(AT_FDCWD, "/proc/self/");
if (selfdir == -1) {
fprintf(stderr, "/proc/self/ is not available: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
len = read_pseudofile_at(selfdir, "status", &data, &size);
if (errno) {
fprintf(stderr, "/proc/self/status: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
printf("/proc/self/status: %zu bytes\n%s\n", len, data);
len = read_pseudofile_at(selfdir, "maps", &data, &size);
if (errno) {
fprintf(stderr, "/proc/self/maps: %s.\n", strerror(errno));
exit(EXIT_FAILURE);
}
printf("/proc/self/maps: %zu bytes\n%s\n", len, data);
close(selfdir);
free(data); data = NULL; size = 0;
return EXIT_SUCCESS;
}
The above example program opens a directory descriptor ("atfile handle") to /proc/self
. (This way you do not need to concatenate strings to construct paths.)
It then reads the contents of /proc/self/status. If successful, it displays its size (in bytes) and its contents.
Next, it reads the contents of /proc/self/maps, reusing the previous buffer. If successful, it displays its size and contents as well.
Finally, the directory descriptor is closed as it is no longer needed, and the dynamically allocated buffer released.
Note that it is perfectly safe to do free(NULL)
, and also to discard the dynamic buffer (free(data); data=NULL; size=0;
) between the read_pseudofile_at()
calls.
Because pseudofiles are typically small, the read_pseudofile_at()
uses a linear dynamic buffer growth policy. If there is no previous buffer, it starts with 8160 bytes, and grows it by 4096 bytes afterwards until sufficiently large. Feel free to replace it with whatever growth policy you prefer, this one is just an example, but works quite well in practice without wasting much memory.
Upvotes: 0
Reputation:
They are created on the fly as you read them. Maybe this would help, it is a tutorial showing how a proc file can be implemented:
https://devarea.com/linux-kernel-development-creating-a-proc-file-and-interfacing-with-user-space/
tl;dr: you give it a name and read and write handlers, that's it. Proc files are meant to be very simple to implement from the kernel dev's point of view. They do not behave like full-featured files though.
As for the bonus question, there doesn't seem to be a way to indicate the size of the file, only EOF on reading.
Upvotes: 2
Reputation: 22084
proc
"files" are not really files, they are just streams that can be read/written from, but they contain no pyhsical data in memory you can map to.
https://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
Upvotes: 1