windwalker
windwalker

Reputation: 379

compare string against tuples in list of tuples - python

Attempting to create new column Tax_Year with appropriate tax year, formed by checking whether datetimes in date column are within the boundaries of the tuple elements for the individual txYear_...

salesReport  = pd.DataFrame({'date': ['2017-07-02 09:00:00', '2017-07-03 15:00:00', '2018-04-05 15:00:00', 
                                    '2018-12-20 11:00:00', '2019-01-06 14:00:00', '2020-09-06 17:00:00'], 
                            'sales': [100, 339, 98, 1020, 630, 765]})

txYear_0304 = (dt.datetime(2003, 4, 6), dt.datetime(2004, 4, 5))
txYear_0405 = (dt.datetime(2004, 4, 6), dt.datetime(2005, 4, 5))
txYear_0506 = (dt.datetime(2005, 4, 6), dt.datetime(2006, 4, 5))
txYear_0607 = (dt.datetime(2006, 4, 6), dt.datetime(2007, 4, 5))
txYear_0708 = (dt.datetime(2007, 4, 6), dt.datetime(2008, 4, 5))
txYear_0809 = (dt.datetime(2008, 4, 6), dt.datetime(2009, 4, 5))
txYear_0910 = (dt.datetime(2009, 4, 6), dt.datetime(2010, 4, 5))
txYear_1011 = (dt.datetime(2010, 4, 6), dt.datetime(2011, 4, 5))
txYear_1112 = (dt.datetime(2011, 4, 6), dt.datetime(2012, 4, 5))
txYear_1213 = (dt.datetime(2012, 4, 6), dt.datetime(2013, 4, 5))
txYear_1314 = (dt.datetime(2013, 4, 6), dt.datetime(2014, 4, 5))
txYear_1415 = (dt.datetime(2014, 4, 6), dt.datetime(2015, 4, 5))
txYear_1516 = (dt.datetime(2015, 4, 6), dt.datetime(2016, 4, 5))
txYear_1617 = (dt.datetime(2016, 4, 6), dt.datetime(2017, 4, 5))
txYear_1718 = (dt.datetime(2017, 4, 6), dt.datetime(2018, 4, 5))
txYear_1819 = (dt.datetime(2018, 4, 6), dt.datetime(2019, 4, 5))
txYear_1920 = (dt.datetime(2019, 4, 6), dt.datetime(2020, 4, 5))
txYear_2021 = (dt.datetime(2020, 4, 6), dt.datetime(2021, 4, 5))

tax_year = [txYear_0304, txYear_0405, txYear_0506, txYear_0607, txYear_0708, txYear_0809, txYear_0910, txYear_1011, txYear_1112, 
            txYear_1213, txYear_1314, txYear_1415, txYear_1516, txYear_1617, txYear_1718, txYear_1819, txYear_1920,  txYear_2021]

When this condition is meet I would like to have the variable name appear in the appropriate row of the new column

For Example

                  date  sales      Tax_Year
0  2017-07-02 09:00:00    100   txYear_1617  
1  2017-07-03 15:00:00    339   txYear_1617
2  2018-04-05 15:00:00     98   txYear_1718 
3  2018-12-20 11:00:00   1020   txYear_1819
4  2019-01-06 14:00:00    630   txYear_1819
5  2020-09-06 17:00:00    765   txYear_2021

I have approached this problem using np.where....

salesReport['Tax_Year'] = np.where(tax_year[0] <= salesReport['date'] and tax_year[1] >= salesReport['date'], tax_year, np.nan)

However, I cannot resolve the error which i recieve...

TypeError: '>=' not supported between instances of 'str' and 'tuple'

In addition, I am also unsure of how to get the variable name as at present I would be returning the actual tuple contents which is not what I want

Upvotes: 1

Views: 53

Answers (1)

ddejohn
ddejohn

Reputation: 8962

Disclaimer:

I'm not proficient in Pandas. I wouldn't be surprised if there was a nicer way to do this.

I've converted the tax_years list of tuples into a dictionary, and defined a standalone function to get the tax year of a given datetime object. I'm not actually 100% what time of day the tax year ends/begins, so the comparison is only on MM-DD-YY and removes the time from the timestamps that exist in the dataframe.

import pandas as pd
import numpy as np
import datetime

tax_years = {
    (datetime.datetime(2003, 4, 6), datetime.datetime(2004, 4, 5)): "TY0304",
    (datetime.datetime(2004, 4, 6), datetime.datetime(2005, 4, 5)): "TY0405",
    (datetime.datetime(2005, 4, 6), datetime.datetime(2006, 4, 5)): "TY0506",
    (datetime.datetime(2006, 4, 6), datetime.datetime(2007, 4, 5)): "TY0607",
    (datetime.datetime(2007, 4, 6), datetime.datetime(2008, 4, 5)): "TY0708",
    (datetime.datetime(2008, 4, 6), datetime.datetime(2009, 4, 5)): "TY0809",
    (datetime.datetime(2009, 4, 6), datetime.datetime(2010, 4, 5)): "TY0910",
    (datetime.datetime(2010, 4, 6), datetime.datetime(2011, 4, 5)): "TY1011",
    (datetime.datetime(2011, 4, 6), datetime.datetime(2012, 4, 5)): "TY1112",
    (datetime.datetime(2012, 4, 6), datetime.datetime(2013, 4, 5)): "TY1213",
    (datetime.datetime(2013, 4, 6), datetime.datetime(2014, 4, 5)): "TY1314",
    (datetime.datetime(2014, 4, 6), datetime.datetime(2015, 4, 5)): "TY1415",
    (datetime.datetime(2015, 4, 6), datetime.datetime(2016, 4, 5)): "TY1516",
    (datetime.datetime(2016, 4, 6), datetime.datetime(2017, 4, 5)): "TY1617",
    (datetime.datetime(2017, 4, 6), datetime.datetime(2018, 4, 5)): "TY1718",
    (datetime.datetime(2018, 4, 6), datetime.datetime(2019, 4, 5)): "TY1819",
    (datetime.datetime(2019, 4, 6), datetime.datetime(2020, 4, 5)): "TY1920",
    (datetime.datetime(2020, 4, 6), datetime.datetime(2021, 4, 5)): "TY2021"
}

salesReport  = pd.DataFrame({'date': ['2017-07-02 09:00:00',
                                      '2017-07-03 15:00:00',
                                      '2018-04-05 15:00:00',
                                      '2018-12-20 11:00:00',
                                      '2019-01-06 14:00:00',
                                      '2020-09-06 17:00:00'], 
                            'sales': [100, 339, 98, 1020, 630, 765]})

salesReport["date"] = pd.to_datetime(salesReport["date"])


def get_tax_year(date):
    for (start, end), tax_year in tax_years.items():
        if start.date() <= date.date() <= end.date():
            return tax_year
    return "null"


salesReport["tax_year"] = [get_tax_year(date) for date in salesReport["date"]]
print(salesReport)

And the output:

                 date  sales tax_year
0 2017-07-02 09:00:00    100   TY1718
1 2017-07-03 15:00:00    339   TY1718
2 2018-04-05 15:00:00     98   TY1718
3 2018-12-20 11:00:00   1020   TY1819
4 2019-01-06 14:00:00    630   TY1819
5 2020-09-06 17:00:00    765   TY2021

Upvotes: 1

Related Questions