Reputation: 21
My problem is that car_name_str
could not be resolved. Why is it not callable and I want to keep the code structure?
I want to keep the structure as struct with union and enum (different datatypes).
Template: How can mixed data types (int, float, char, etc) be stored in an array?
//car_union.h
typedef struct {
enum { number_of_seats_int, car_cost_float, car_name_str } type;
union {
int number_of_seats;
float car_cost;
char* car_name;
} value;
}Car_data_ex[30][3];
extern Car_data_ex *Car_data[30][3];
//fill_car.c
#include "car_union.h"
Car_data_ex *Car_data[30][3];
Car_data[0][0]->type = car_name_str; //-> because pointer but doesnt work
Car_data[0][0]->value->car_name= "land rover";
Car_data[0][1]->type = car_cost_float; //doesnt work
Car_data[0][1]->value->car_cost= 45000;
Upvotes: 0
Views: 238
Reputation: 149145
You have over complexified everything.
A typedef is just to give an alias to a (complex) type. Here the type is a struct containing an enum and an union. So it should be:
typedef struct {
enum { number_of_seats_int, car_cost_float, car_name_str } type;
union {
int number_of_seats;
float car_cost;
char* car_name;
} value;
}Car_data_ex;
Next, using an array of pointers can make sense, but provided each pointer in the array does point to a true object. Here you only want a plain (2D) array:
Car_data_ex Car_data[30][3];
Once this has been done, you can write with no error or warning:
Car_data[0][0].type = car_name_str;
Car_data[0][0].value.car_name= "land rover";
Car_data[0][1].type = car_cost_float;
Car_data[0][1].value.car_cost= 45000;
And you should avoid extern Car_data_ex Car_data[30][3];
. It declares a global array, that will have to be defined in one single compilation unit (.c file). Here again, it can make sense, but IMHO it is a rather advanced feature that can be hard to correctly use. And nothing in the shown code lets think that is is required...
Upvotes: 2
Reputation: 60127
Regardless of what's in your struct, when you do
typedef struct Car_dataStructTag{
//...
}Car_data_ex[30][3];
(I've tagged the struct so it can be referred to by struct Car_dataStructTag
),
then Car_data_ex
is a type alias resolving to struct Car_dataStructTag [30][3]
which means
extern Car_data_ex *Car_data[30][3];
is fully equivalent to
extern struct Car_dataStructTag (*Car_data[30][3])[30][3];
which means Car_data[x][y]
is a pointer to a two-dimensional array of struct Car_dataStructTag
,
which is definitely not something you can apply ->
to.
Try:
typedef struct Car_dataStructTag{
//...
}Car_data_ex[30][3];
extern Car_data_ex *Car_data[30][3];
extern struct Car_dataStructTag (*Car_data[30][3])[30][3];
in a compiler -- it gets accepted, confirming the declaration equivalence.
Running into situations such as this one is why it's generally considered ill-advisable to typedef
arrays or pointers.
Upvotes: 2
Reputation: 3498
Just remove the [30][3]
from the type def, like this
#include <stdio.h>
//car_union.h
typedef struct {
enum { number_of_seats_int, car_cost_float, car_name_str } type;
union {
int number_of_seats;
float car_cost;
char* car_name;
} value;
}Car_data_ex;
extern Car_data_ex *Car_data[30][3];
int main() {
Car_data_ex *Car_data[30][3];
Car_data[0][0]->type = car_name_str; //-> because pointer but doesnt work
Car_data[0][0]->value.car_name= "land rover";
Car_data[0][1]->type = car_cost_float; //doesnt work
Car_data[0][1]->value.car_cost= 45000;
}
Upvotes: 3