Reputation: 35
Just curious, and quite new to Panda in Python,
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Is there an effective way to select column a
, b
, then from j
to t
only, resulting in the output to be like this,
a b j k l m n o p q r s t
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2
I can try,
original_column = original_dataframe[['a', 'b'...]]
But that will be too much of a hassle I rather use indexes but don't know how
Upvotes: 1
Views: 65
Reputation: 212
try to drop the columns
df.drop(['B', 'C'], axis=1)
You will get the df just with the columns are remaining.
Upvotes: 1
Reputation: 862376
Use:
df = df[['a','b'] + df.loc[:, 'j':'t'].columns.tolist()]
print (df)
a b j k l m n o p q r s t
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2
Or:
df = pd.concat([df[['a','b']], df.loc[:, 'j':'t']], axis=1)
print (df)
a b j k l m n o p q r s t
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2 2 2 2
Upvotes: 2