Reputation: 81
The following code returns Successful Solution
Objective: 0.
. But it is not the optimal solution. The optimal solution is -6
. From reading other issues I believe it's a problem with using non-Gekko functions in the objective function but the only non-Gekko function I use is np.matmul
. Does np.matmul
work with gekko arrays? Note sigma_post
is an nxn numpy identity matrix.
m = GEKKO(remote=False)
m.options.max_iter=1000
#m.options.ipopt_integer_tol=1
#m.solver_options = ['minlp_integer_tol 50']
#m.solver_options = ['minlp_max_iter_with_int_sol 1000',
# 'minlp_branch_method 1']
N = 2
b = m.Array(m.Var,(N,n), lb=0, ub=1, integer=True)
for i in range(N):
for j in range(n):
if j in [qb_index_range[0], rb_index_range[0], wr_index_range[0]]:
b[i][j].value = 1
else:
b[i][j].value = 0
print('b: ', b)
# CONSTRAINT: Each Lineup must be less than budget
z = np.array([None]*N)
for i in range(N):
z[i] = m.Intermediate(sum(b[i, :]*list(info_df['cost'])))
m.Equations([z[i] <= budget for i in range(N)])
# CONSTRAINT: Each Lineup has one QB
z_1 = np.array([None]*N)
for i in range(N):
z_1[i] = m.Intermediate(sum(b[i, qb_index_range[0]: qb_index_range[1]+1]))
m.Equations([z_1[i] == 1 for i in range(N)])
# CONSTRAINT: Each Lineup has one RB
z_2 = np.array([None]*N)
for i in range(N):
z_2[i] = m.Intermediate(sum(b[i, rb_index_range[0]: rb_index_range[1]+1]))
m.Equations([z_2[i] == 1 for i in range(N)])
# CONSTRAINT: Each Lineup has one WR
z_3 = np.array([None]*N)
for i in range(N):
z_3[i] = m.Intermediate(sum(b[i, wr_index_range[0]: wr_index_range[1]+1]))
m.Equations([z_3[i] == 1 for i in range(N)])
#OBJECTIVE: maximize with two lineups
sigma_1 = np.array([[None]*N for i in range(N)])
sig = np.matmul(np.matmul(b, sigma_post), b.T)
for i in range(N):
for j in range(N):
sigma_1[i][j] = m.Intermediate(sig[i][j])
m.Obj(-(sigma_1[0][0] + sigma_1[1][1]- 2*sigma_1[1][0]))
m.options.SOLVER = 1
m.solve(debug=0)
EDIT:
To be transparent, ideally the objective function I care about is below but the simpler objective function detailed above is causing issues so I decided to start troubleshooting there. The below objective throws Warning: no more possible trial points and no integer solution Maximum iterations
for some values of mu
but mu
is not present in the constraints. Thanks so much for any advice!
pi = 3.14159
eps = 1.0E-6
def normal_cdf(x, m):
return 1/(1+m.exp(-1.65451*x))
def normal_pdf(x, m):
return (1/((2*pi)**(.5)))*m.exp((x**2)/2)
def theta(s, m):
return m.sqrt(s[0][0]+s[1][1] - 2*s[0][1])
# OBJECTIVE: Maximize
mu_1 = np.array([None]*N)
for i in range(N):
mu_1[i] = m.Intermediate(np.matmul(b[i, :], mu))
inter = m.if2(theta(sigma_1, m)-eps, .5*mu_1[0]+.5*mu_1[1],
(mu_1[0]*normal_cdf((mu_1[0]-mu_1[1])/theta(sigma_1, m), m) + \
mu_1[1]*normal_cdf((mu_1[1]-mu_1[0])/theta(sigma_1, m), m) + \
theta(sigma_1, m)*normal_pdf((mu_1[0]-mu_1[1])/theta(sigma_1, m), m)))
m.Obj(-inter)
Upvotes: 2
Views: 385
Reputation: 14346
There is no problem to use np.matmul
or any other function that allows objects instead of only numeric values. Objects are needed because b
is an array of Gekko type values that are needed to compute the derivatives with automatic differentiation. You can also use the new @
operator that simplifies the expressions. Your original problem statement was incomplete with many missing definitions. I added a few sample values so that the script can run without definition errors. Here are guidelines to help reproduce the error.
N = 2
n = 3
qb_index_range = [0,2]
rb_index_range = [0,2]
wr_index_range = [0,2]
info_df = pd.DataFrame({'cost':np.ones(n)})
budget = 100
sigma_post = np.random.rand(n,n)
Here is an example of using np.matmul()
that can also be the dot product np.dot()
.
sigma_1 = np.matmul(np.matmul(b,sigma_post), b.T)
This can also be written with the matrix multiplication operator.
sigma_1 = b@[email protected]
Here is the complete script.
from gekko import GEKKO
import numpy as np
import pandas as pd
m = GEKKO(remote=False)
m.options.max_iter=1000
N = 2
n = 3
b = m.Array(m.Var,(N,n), lb=0, ub=1, integer=True)
qb_index_range = [0,2]
rb_index_range = [0,2]
wr_index_range = [0,2]
info_df = pd.DataFrame({'cost':np.ones(n)})
budget = 100
sigma_post = np.eye(n)
for i in range(N):
for j in range(n):
if j in [qb_index_range[0], rb_index_range[0], wr_index_range[0]]:
b[i][j].value = 1
else:
b[i][j].value = 0
# CONSTRAINT: Each Lineup must be less than budget
z = [None]*N
for i in range(N):
z[i] = m.Intermediate(sum(b[i, :]*list(info_df['cost'])))
m.Equations([z[i] <= budget for i in range(N)])
# CONSTRAINT: Each Lineup has one QB
z_1 = [None]*N
for i in range(N):
z_1[i] = m.Intermediate(sum(b[i, qb_index_range[0]: qb_index_range[1]+1]))
m.Equations([z_1[i] == 1 for i in range(N)])
# CONSTRAINT: Each Lineup has one RB
z_2 = np.array([None]*N)
for i in range(N):
z_2[i] = m.Intermediate(sum(b[i, rb_index_range[0]: rb_index_range[1]+1]))
m.Equations([z_2[i] == 1 for i in range(N)])
# CONSTRAINT: Each Lineup has one WR
z_3 = np.array([None]*N)
for i in range(N):
z_3[i] = m.Intermediate(sum(b[i, wr_index_range[0]: wr_index_range[1]+1]))
m.Equations([z_3[i] == 1 for i in range(N)])
#OBJECTIVE: maximize with two lineups
#sigma_1 = np.matmul(np.matmul(b,sigma_post), b.T)
sigma_1 = b@[email protected]
m.Maximize(sigma_1[0][0] + sigma_1[1][1]- 2*sigma_1[1][0])
m.options.SOLVER = 1
m.solve(debug=0,disp=False)
print(b)
This produces a successful solution. The correct solution cannot be verified because the original problem statement is not complete.
[[[1.0] [0.0] [0.0]]
[[1.0] [0.0] [0.0]]]
Upvotes: 1