Reputation: 59
I am getting json response from a site
response = requests.get(API_URL, params=data)
response_json = response.json()
a = response_json['Time Series (5min)']
print(a)
Output:
{
'2021-02-19 18:45:00': {'1. open': '119.1800', '2. high': '119.1800', '3. low': '119.1800', '4. close': '119.1800', '5. volume': '1250'},
'2021-02-19 18:25:00': {'1. open': '119.1000', '2. high': '119.1000', '3. low': '119.1000', '4. close': '119.1000', '5. volume': '701'} ... }
Than i am trying to convert it to dataframe:
data = pd.json_normalize(data=a)
print(data)
But in the result i have 1 row with lots of columns.
So how should i convert it to get table with datetime as index and keys in JSON as columns?
Upvotes: 0
Views: 699
Reputation: 31146
DataFrame()
reindex()
to convert index to date/timea = {'2021-02-19 18:45:00': {'1. open': '119.1800',
'2. high': '119.1800',
'3. low': '119.1800',
'4. close': '119.1800',
'5. volume': '1250'},
'2021-02-19 18:25:00': {'1. open': '119.1000',
'2. high': '119.1000',
'3. low': '119.1000',
'4. close': '119.1000',
'5. volume': '701'}}
df = pd.DataFrame(a).T
df.reindex(pd.to_datetime(df.index))
1. open | 2. high | 3. low | 4. close | 5. volume | |
---|---|---|---|---|---|
2021-02-19 18: 45: 00 | 119.18 | 119.18 | 119.18 | 119.18 | 1250 |
2021-02-19 18: 25: 00 | 119.1 | 119.1 | 119.1 | 119.1 | 701 |
Upvotes: 1