Reputation: 355
I've seen example of signing https://www.pdftron.com/documentation/nodejs/guides/features/signature/sign-pdf
signOnNextSave uses PKCS #12 certificate, but I use Google KMS for asymmetric signing to keep private keys safe.
Here is example of signing and verifying by Google Cloud KMS
I tried to implement custom SignatureHandler but Node.JS API is different from Java or .NET https://www.pdftron.com/api/pdfnet-node/PDFNet.SignatureHandler.html
How can I implement custom signing and verifying logic?
const data = Buffer.from('pdf data')
// We have 2048 Bit RSA - PSS Padding - SHA256 Digest key in Google Cloud KMS
const signAsymmetric = async () => {
const hash = crypto.createHash('sha256')
hash.update(data)
const digest = hash.digest()
const digestCrc32c = crc32c.calculate(digest)
// Sign the data with Cloud KMS
const [signResponse] = await client.asymmetricSign({
name: locationName,
digest: {
sha256: digest
},
digestCrc32c: {
value: digestCrc32c
}
})
if (signResponse.name !== locationName) {
throw new Error('AsymmetricSign: request corrupted in-transit')
}
if (!signResponse.verifiedDigestCrc32c) {
throw new Error('AsymmetricSign: request corrupted in-transit')
}
if (
crc32c.calculate(signResponse.signature) !==
Number(signResponse.signatureCrc32c.value)
) {
throw new Error('AsymmetricSign: response corrupted in-transit')
}
// Returns signature which is buffer
const encoded = signResponse.signature.toString('base64')
console.log(`Signature: ${encoded}`)
return signResponse.signature
}
// Verify data with public key
const verifyAsymmetricSignatureRsa = async () => {
const signatureBuffer = await signAsymmetric()
const publicKeyPem = await getPublicKey()
const verify = crypto.createVerify('sha256')
verify.update(data)
verify.end()
const key = {
key: publicKeyPem,
padding: crypto.constants.RSA_PKCS1_PSS_PADDING
}
// Verify the signature using the public key
const verified = verify.verify(key, signatureBuffer)
return verified
}
Upvotes: 0
Views: 515
Reputation: 111
At this time, the PDFTron SDK only supports custom handlers on C++, Java, and C# (there are more plans to include additional languages in the future).
On a different platform like C++, you would extend the custom handler functions by putting hash.update(data)
into SignatureHandler::AppendData
, and the rest of signAsymmetric would go into SignatureHandler::CreateSignature
. A name would be given to the custom handler for interoperability like Adobe.PPKLite
(we do not yet support custom handler SubFilter entries, only Filter -- see PDF standard for the difference -- but this won't matter so long as you use a verification tool that supports Filter Adobe.PPKLite
). Please see the following link for a concrete example:
https://www.pdftron.com/documentation/samples/cpp/DigitalSignaturesTest
As for verification, our code can already do this for you if your signatures fulfill the following conditions:
If you have more questions or require more details, please feel free to reach out to PDFTron support at [email protected]
Upvotes: 2