Reputation: 65
I am trying to convert my columns values according to an interval like,
if(x<5)
x=2
else if(x>=5 %% x<10)
x=3
and try to doing in python with single line code. Using mask and cut method but I could not do. this is my trial,
dataset['CURRENT_RATIO' ] = dataset['CURRENT_RATIO'].mask((dataset['CURRENT_RATIO'] < 0.02, -7.0) | (dataset['CURRENT_RATIO'] > =0.02 & dataset['CURRENT_RATIO'] < 0.37),-5))
I need this actually if x<0.02 then -7 else if x>=0.02 and x<0.37 then -5...
inptut output
0.015 -7
0.02 -5
0.37 -3
0.75 1
Upvotes: 2
Views: 1450
Reputation: 444
A list comprehension will do:
dataset.CURRENT_RATIO = [-7 if i<.02 else -5 if i<.37 else -3 if i<.75 else 1 for i in dataset.CURRENT_RATIO]
Timing it with a random dataset of 1,000,000 rows gave the following result:
334 ms ± 5.89 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
If you were to do this with multiple columns with different thresholds and update values, I would do the following:
df = pd.DataFrame({'RATIO1': np.random.rand(10000000),
'RATIO2': np.random.rand(10000000)})
update_per_col = {'RATIO1': [(.02, -7), (.37, -5), (.75, -3), 1],
'RATIO2': [(.12, 5), (.47, 6), (.85, 7), 8]}
cols_to_be_updated = ['RATIO1', 'RATIO1']
for col in cols_to_be_updated:
df[col] = [update_per_col[col][0][1] if i<update_per_col[col][0][0] else
update_per_col[col][1][1] if i<update_per_col[col][1][0] else
update_per_col[col][2][1] if i<update_per_col[col][2][0] else update_per_col[col][3]
for i in df[col]]
When we time the for loop with 10,000,000 rows and two columns we get:
9.37 s ± 147 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
To address Joe Ferndz's comment, lets try to speed it up. I came up with two methods: apply()
and a lambda
. With apply()
we run the following code (only the for loop was timed):
def update_ratio(x, updates):
if x < updates[0][0]:
return updates[0][1]
elif x < updates[1][0]:
return updates[1][1]
elif x < updates[2][0]:
return updates[2][1]
else:
return updates[3]
for col in cols_to_be_updated:
df[col] = df[col].apply(update_ratio, updates=update_per_col[col])
This gives us:
11.8 s ± 285 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Finally the lambda
gives:
for col in cols_to_be_updated:
df[col] = df[col].apply(lambda x: update_per_col[col][0][1] if x<update_per_col[col][0][0] else
update_per_col[col][1][1] if x<update_per_col[col][1][0] else
update_per_col[col][2][1] if x<update_per_col[col][2][0] else
update_per_col[col][3])
8.91 s ± 171 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
This means that a lambda is the fastest method, but a list comprehension is not far off.
Upvotes: 1
Reputation: 6337
It would be smart to write your own lambda
-function and use pandas.apply()
def my_lambda(x):
if(x<5):
x=2
elif(x<10):
x=3
return x
dataset['CURRENT_RATIO' ] = dataset['CURRENT_RATIO'].apply(my_lambda)
Upvotes: 0
Reputation: 186
use
dataset['CURRENT_RATIO'][dataset['CURRENT_RATIO']<10]=3
dataset['CURRENT_RATIO'][dataset['CURRENT_RATIO']<5]=2
first line you make all value less than 10 to 3 then all values less than 5 to 2 it makes all value between 5 to 10 remain 3
Upvotes: 0