Reputation: 381
Consider a DataFrame
such as
df = pd.DataFrame({'a': [1,-2,0,3,-1,2],
'b': [-1,-2,-5,-7,-1,-1],
'c': [-1,-2,-5,4,5,3]})
For each column, how to replace any negative value with the last positive value or zero ? Last here refers from top to bottom for each column. The closest solution noticed is for instance df[df < 0] = 0
.
The expected result would be a DataFrame
such as
df_res = pd.DataFrame({'a': [1,1,0,3,3,2],
'b': [0,0,0,0,0,0],
'c': [0,0,0,4,5,3]})
Upvotes: 5
Views: 2090
Reputation: 71
Expected result may obtained with this manipulations:
mask = df >= 0 #creating boolean mask for non-negative values
df_res = (df.where(mask, np.nan) #replace negative values to nan
.ffill() #apply forward fill for nan values
.fillna(0)) # fill rest nan's with zeros
Upvotes: 3
Reputation: 26676
Use pandas where
df.where(df.gt(0)).ffill().fillna(0).astype(int)
a b c
0 1 0 0
1 1 0 0
2 1 0 0
3 3 0 4
4 3 0 5
5 2 0 3
Upvotes: 3
Reputation: 42906
You can use DataFrame.mask
to convert all values < 0
to NaN
then use ffill
and fillna
:
df = df.mask(df.lt(0)).ffill().fillna(0).convert_dtypes()
a b c
0 1 0 0
1 1 0 0
2 0 0 0
3 3 0 4
4 3 0 5
5 2 0 3
Upvotes: 6