Reputation: 303
I have implemented a live-update datatable to correspond with a live-update graph. Functionally, both work very well. I do have a problem with filtering the datatable to include certain columns and exclude others. For ex. If the graph is zoomed in for certain x-value (09:00-10:00), is there any way I can also crop the corresponding datatable to represent columns from that same value? Perhaps add a button with a callback that deletes specific column ids? Is there a way to delete specific 'column' 'id' inputs through python with out using the GUI? As of now, I can only manually delete individual columns which is very tedious given the amount of columns. Thank you. I hope this question is not too open-ended.
table_contents = ['Propofol/Remi @ 6.5 ug/ml', 'Fentanyl (ug)', 'Propofol (mg)', 'Remi (ug)',
'Ketorolac (mg)']
html.Div([dash_table.DataTable(
id='editing-columns',
columns=[{
'name': 'Parameter',
'id': 'column1',
'deletable': True,
'renamable': True
}],
data=[
{'column1': j}
for j in table_contents
],
editable=True,
)]),
# The callback stores the previous length of the csv file in dcc.store and appends new columns if new csv data uploaded
@app.callback(Output('editing-columns', 'columns'),
[Input('graph-update', 'n_intervals')],
[State('editing-columns', 'columns')],
[State('mystore', 'data')])
def update_columns(n, btn, existing_columns, data):
with open('temp.csv', 'r') as rf:
reader = csv.reader(rf)
for a in reader:
existing_columns.append({
'id': a[3], 'name': a[3],
'renamable': True, 'deletable': True
})
return existing_columns, html.Div('Program running')
else:
check_length = []
de_serialized = json.loads(data)
with open('temp.csv', 'r') as rf:
reader = csv.reader(rf)
for a in reader:
check_length.append(a[3])
if len(check_length) == 0:
return existing_columns, html.Div('Program running')
elif len(check_length) > len(de_serialized):
existing_columns.append({
'id': check_length[-1], 'name': check_length[-1],
'renamable': True, 'deletable': True
})
return existing_columns, html.Div('Program running')
else:
return existing_columns, html.Div('Program running')
#The graph is a bar and scatter graph that is updated with x,y values derived from the same csv as the datatable.
@app.callback(
dash.dependencies.Output('live-graph', 'figure'),
[dash.dependencies.Input('graph-update-BP', 'n_intervals')],
)
def update_graph_scatter_1(btn, n):
trace = []
trace2 = []
blood_pressure = []
hr = []
with open('temp.csv', 'r') as rf:
reader_2 = csv.reader(rf)
for a in reader_2:
blood_pressure.append(eval(a[4]))
time.append(a[3])
for i in range(0, len(blood_pressure)):
trace.append(go.Box(y=blood_pressure[i],
x=triple_time[i],
line=dict(color='#6a92ff'),
hoverinfo='all'))
for a in range(0, len(hr)):
trace2.append(go.Scatter(y=coated_hr[a],
x=coated_time[a],
name='HR',
Upvotes: 1
Views: 1170
Reputation: 1127
Whenever you pan or zoom, a relayoutData interaction is triggered, from there you can get the axis ranges.
The dcc.Graph component has four attributes that can change through user-interaction: hoverData, clickData, selectedData, relayoutData. These properties update when you hover over points, click on points, or select regions of points in a graph. https://dash.plotly.com/interactive-graphing
import json
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
from dash.exceptions import PreventUpdate
import plotly.express as px
import pandas as pd
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
df = pd.DataFrame({
"x": [1,2,1,2],
"y": [1,2,3,4],
"customdata": [1,2,3,4],
"fruit": ["apple", "apple", "orange", "orange"]
})
fig = px.scatter(df, x="x", y="y", color="fruit", custom_data=["customdata"])
fig.update_traces(marker_size=20)
app.layout = html.Div([
dcc.Graph(
id='basic-interactions',
figure=fig
),
html.Div(className='row', children=[
html.Div([
dcc.Markdown("""
**Zoom and Relayout Data**
Click and drag on the graph to zoom or click on the zoom
buttons in the graph's menu bar.
Clicking on legend items will also fire
this event.
"""),
html.Pre(id='relayout-data'),
])
])
])
@app.callback(
Output('relayout-data', 'children'),
Input('basic-interactions', 'relayoutData'))
def display_relayout_data(relayoutData):
if relayoutData is None:
raise PreventUpdate
elif "xaxis.range[0]" not in relayoutData.keys():
raise PreventUpdate
else:
#get the relevant axis ranges, you can use to drop columns from the datatable
print(relayoutData,type(relayoutData))
return json.dumps(relayoutData, indent=2)
if __name__ == '__main__':
app.run_server(debug=True)
Upvotes: 1