Reputation: 51
I have a large Dataframe. One of my columns contains the name of others. I want to eval this colum and set in each row the value of the referenced column:
|A|B|C|Column|
|:|:|:|:-----|
|1|3|4| B |
|2|5|3| A |
|3|5|9| C |
Desired output:
|A|B|C|Column|
|:|:|:|:-----|
|1|3|4| 3 |
|2|5|3| 2 |
|3|5|9| 9 |
I am achieving this result using:
df.apply(lambda d: eval("d." + d['Column']), axis=1)
But it is very slow, even using swifter. Is there a more efficient way of performing this?
Upvotes: 1
Views: 156
Reputation: 34076
For better performance, use df.to_numpy()
:
In [365]: df['Column'] = df.to_numpy()[df.index, df.columns.get_indexer(df.Column)]
In [366]: df
Out[366]:
A B C Column
0 1 3 4 3
1 2 5 3 2
2 3 5 9 9
Upvotes: 1
Reputation: 323306
Since lookup
is going to decprecated try numpy
method with get_indexer
df['new'] = df.values[df.index,df.columns.get_indexer(df.Column)]
df
Out[75]:
A B C Column new
0 1 3 4 B 3
1 2 5 3 A 2
2 3 5 9 C 9
Upvotes: 0
Reputation: 150765
For Pandas < 1.2.0, use lookup
:
df['Column'] = df.lookup(df.index, df['Column'])
From 1.2.0+
, lookup
is decprecated, you can just use a for
loop:
df['Column'] = [df.at[idx, r['Column']] for idx, r in df.iterrows()]
Output:
A B C Column
0 1 3 4 3
1 2 5 3 2
2 3 5 9 9
Upvotes: 0