Reputation: 27
I have this dataframe of values (ignore the numbers)
| A | B || C | D |
| 5 | 7 ||15 | 9 |
|13 | 12||15 | 9 |
|15 | 9 ||15 | 9 |
| 5 | 7 ||15 | 9 |
|13 | 12||15 | 9 |
I would like to apply a function(y,x) where (y,x) refers to every possible pair of columns in the dataframe (where y is not the same as x), then save the output from the function into a dictionary.
dict = {
"A_B": ["blah", "blah", "blah"]
"A_C": ["blah", "blah", "blah"]
"A_D': ["blah", "blah", "blah"]
}
The dictionary shld store the output ["blah", "blah", "blah"] as a list in the dictionary.
Is there any way I can do this?
I suppose I have to make a for loop for every possible combination of the columns then apply the function to this, but I'm not sure how I can approach this. Appreciate any help. Thanks!
Upvotes: 0
Views: 665
Reputation: 8790
You can use itertools
to get all the unique pairs of columns, and then create a loop to apply an operation to them:
import itertools
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(4,4), columns=['A','B','C','D'])
output = {}
for x, y in itertools.combinations(df.columns, 2):
output[f'{x}_{y}'] = (df[x] * df[y]).to_list()
print(output)
Result:
{'A_B': [0.5373750437559887,
0.12077240904054208,
0.02128148027667116,
0.007578133428536173],
'A_C': [0.039529837951733815,
0.6965081691767399,
0.04341804790548652,
0.06767107788435821],
'A_D': [0.07986784691848457,
0.6510775100893785,
0.05386515105603322,
0.031171732070095028],
'B_C': [0.03800661675931452,
0.1710653815593833,
0.136685425122361,
0.07191805478874766],
'B_D': [0.0767902629130131,
0.15990741762557956,
0.16957420765210682,
0.033128042362621186],
'C_D': [0.00564876743811126,
0.9222041985664514,
0.3459618868451074,
0.2958261893932231]}
Here, the operation is multiplication *
, but you could replace that with some other function, e.g.:
# find the maximum across the two columns
output = {}
for x, y in itertools.combinations(df.columns, 2):
output[f'{x}_{y}'] = np.max(pd.concat([df[x], df[y]]))
print(output)
# {'A_B': 0.8884565587865458, 'A_C': 0.8687553149454967, 'A_D': 0.9452913147551872, 'B_C': 0.8884565587865458, 'B_D': 0.9452913147551872, 'C_D': 0.9452913147551872}
Upvotes: 1