Reputation: 3640
I want to factorize a large number using Fermat's factorization method. This is how I implemented it:
import numpy as np
def fac(n):
x = np.ceil(np.sqrt(n))
y = x*x - n
while not np.sqrt(y).is_integer():
x += 1
y = x*x - n
return(x + np.sqrt(y), x - np.sqrt(y))
Using this method I want to factor N
into its components. Note that N=p*q
, where p
and q
are prime.
I chose the following values to compute N
:
p = 34058934059834598495823984675767545695711020949846845989934523432842834738974239847294083409583495898523872347284789757987987387543533846141.0
q = 34058934059834598495823984675767545695711020949846845989934523432842834738974239847294083409583495898523872347284789757987987387543533845933.0
and defined N
N = p*q
Now I factor N:
r = fac(n)
However, the factorization seems to not be correct:
int(r[0])*int(r[1]) == N
It does work for smaller ints:
fac(65537)
Out[1]: (65537.0, 1.0)
I'm quite sure the reason is numerical precision at some point.
I tried calculating N in numpy using object types:
N = np.dot(np.array(p).astype(object), np.array(q).astype(object))
but it doesn't help. Still, the numpy requires a float for the sqrt
function.
I also tried using the math
library instead of numpy, this library seems to not require a float for its sqrt function, but ultimately running into precision issues as well.
Upvotes: 0
Views: 1231
Reputation: 148890
Python int are multiple precision numbers. But numpy is a wrapper around C low level libraries to speed up operations. The downside is that it cannot handle those multi-precision numbers. Worse, if you try to use np.sqrt
on them, they will be converted to floating point numbers (C double or numpy float64) what have a precision of about 15 decimal digits.
But as Python int type is already a multiprecision type, you could use math.sqrt
to get an approximative value of the true square root, and then use Newton to find a closer value:
def isqrt(n):
x = int(math.sqrt(n))
old = None
while True:
d = (n - x * x) // (2 * x)
if d == 0: break
if d == 1: # infinite loop prevention
if old is None:
old = 1
else: break
x += d
return x
Using it, your fac
function could become:
def fac(n):
x = isqrt(n)
if x*x < n: x += 1
y = x * x - n
while True:
z = isqrt(y)
if z*z == y: break
x += 1
y = x*x -n
return x+z, x-z
Demo:
p = 34058934059834598495823984675767545695711020949846845989934523432842834738974239847294083409583495898523872347284789757987987387543533846141
q = 34058934059834598495823984675767545695711020949846845989934523432842834738974239847294083409583495898523872347284789757987987387543533845933
N = p*q
print(fac(N) == (p,q))
prints as expected True
Upvotes: 3