Reputation: 3693
I want to set the value of a column in a Spark DataFrame based on the values of an arbitrary number of other columns in the row.
I realise I can do it like this:
df.withColumn("IsValid", when($"col1" === $"col2" && $"col3" === $"col4", true).otherwise(false))
But there has to be a better way of doing this for data frames with 20+ columns.
The row contains an even number of columns that should be checked pairwise in order to know if the "IsValid" column will be true
or false
.
Upvotes: 0
Views: 1159
Reputation: 32710
Another way to group the columns pairwise and construct the condition for when function :
val condition = df.columns.grouped(2).map{ case Array(a, b) => col(a) === col(b)}.reduce(_ and _)
val df1 = df.withColumn("IsValid", when(condition,true).otherwise(false))
Upvotes: 1
Reputation: 42422
You can try to map and reduce the list of columns to the condition that you wanted:
val cond = (0 to df.columns.length - 1 by 2)
.map(i => (col(df.columns(i)) === col(df.columns(i+1))))
.reduce(_ && _)
df.withColumn("IsValid", when(cond, true).otherwise(false))
Upvotes: 1