Reputation: 681
I want to design a neural network in Tensorflow2 that maps 2D values to other 2D values. I can't figure out how to initialize my model to do this without giving me a dimension error.
import numpy
import tensorflow as tf
def euclidean_distance_loss(y_true, y_pred):
return numpy.sqrt(sum((y_true - y_pred)**2.0))
#===Make Data====#
x_train = numpy.asarray([ [1, 2], [3, 1], [2, 2] ])
x_test = numpy.asarray([ [10, 1], [2, 0], [5, 1] ])
y_train = numpy.asarray([ [3, 8], [2, 7], [3, 3] ])
y_test = numpy.asarray([ [1, 0], [0, 1], [4, 9] ])
#===Make Model===#
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(128,input_shape=(1, x_train_points.shape[1]), activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(5, activation='relu')
])
#===Run Model===#
model.compile(optimizer='adam', loss=euclidean_distance_loss, metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
When I try and run this, I get:
ValueError: Dimensions must be equal, but are 2 and 5 for '{{node euclidean_distance_lowss/sub}} = Sub[T=DT_Float](IteratorGetNext:1, sequential/dense_1/Relu)' with input schapes: [?,2], [?,5].
How am I suppose to setup this neural network so that it can take in this type of 2D data? Sorry for the basic question -- I am just starting to use Tensorflow2!
Edit: Given a 2D vector as input, I want the model to output another 2D vector.
Upvotes: 0
Views: 233
Reputation: 2941
The final layer of the model is defining a shape [5]
output tensor per example:
tf.keras.layers.Dense(5, activation='relu')
However the labels (y_train
and y_test
) have shape [2]
per example:
y_train = numpy.asarray([ [3, 8], [2, 7], [3, 3] ])
y_test = numpy.asarray([ [1, 0], [0, 1], [4, 9] ])
Trying changing the last layer to have 2 units.
Upvotes: 1