Reputation: 75
I am attempting to implement a CNN-LSTM that classifies mel-spectrogram images representing the speech of people with Parkinson's Disease/Healthy Controls. I am trying to implement a pre-existing model (DenseNet-169) with an LSTM model, however I am running into the following error: ValueError: Input 0 of layer zero_padding2d is incompatible with the layer: expected ndim=4, found ndim=3. Full shape received: [None, 216, 1].
Can anyone advise where I'm going wrong?
import librosa
import os
import glob
import IPython.display as ipd
from pathlib import Path
import timeit
import time, sys
%matplotlib inline
import matplotlib.pyplot as plt
import librosa.display
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
import numpy as np
import cv2
import seaborn as sns
%tensorflow_version 1.x #version 1 works without problems
import tensorflow
from tensorflow.keras import models
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.layers import TimeDistributed
import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.callbacks import EarlyStopping
from sklearn.metrics import confusion_matrix, plot_confusion_matrix
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dropout, Dense, BatchNormalization, Activation, GaussianNoise, LSTM
from sklearn.metrics import accuracy_score
DATA_DIR = Path('/content/drive/MyDrive/PhD_Project_Experiments/Spontaneous_Dialogue_PD_Dataset')
diagnosis = [x.name for x in DATA_DIR.glob('*') if x.is_dir()]
diagnosis
def create_paths_ds(paths: Path, label: str) -> list:
EXTENSION_TYPE = '.wav'
return [(x, label) for x in paths.glob('*' + EXTENSION_TYPE)]
from collections import Counter
categories_to_use = [
'Parkinsons_Disease',
'Healthy_Control',
]
NUM_CLASSES = len(categories_to_use)
print(f'Number of classes: {NUM_CLASSES}')
paths_all_labels = []
for cat in categories_to_use:
paths_all_labels += create_paths_ds(DATA_DIR / cat, cat)
X_train, X_test = train_test_split(paths_all_labels,test_size=0.1, stratify = [paths_all_labels[y][1] for y in range(len(paths_all_labels))] ) #fix stratified sampling for test data
X_train, X_val = train_test_split(X_train, test_size=0.2, stratify = [X_train[y][1] for y in range(len(X_train))] )
for i in categories_to_use:
print('Number of train samples for '+i+': '+ str([X_train[y][1] for y in range(len(X_train))].count(i))) #checks whether train samples are equally divided
print('Number of test samples for '+i+': '+ str([X_test[y][1] for y in range(len(X_test))].count(i))) #checks whether test samples are equally divided
print('Number of validation samples for '+i+': '+ str([X_val[y][1] for y in range(len(X_val))].count(i))) #checks whether val samples are equally divided
print(f'Train length: {len(X_train)}')
print(f'Validation length: {len(X_val)}')
print(f'Test length: {len(X_test)}')
def load_and_preprocess_lstm(dataset, SAMPLE_SIZE = 30):
IMG_SIZE = (216,128)
progress=0
data = []
labels = []
for (path, label) in dataset:
audio, sr = librosa.load(path)
dur = librosa.get_duration(audio, sr = sr)
sampleNum = int(dur / SAMPLE_SIZE)
offset = (dur % SAMPLE_SIZE) / 2
for i in range(sampleNum):
audio, sr = librosa.load(path, offset= offset+i, duration=SAMPLE_SIZE)
sample = librosa.feature.melspectrogram(audio, sr=sr)
# print(sample.shape)
sample = cv2.resize(sample, dsize=IMG_SIZE)
sample = np.expand_dims(sample,-1)
print(sample.shape)
data += [(sample, label)]
labels += [label]
progress +=1
print('\r Progress: '+str(round(100*progress/len(dataset))) + '%', end='')
return data, labels
def retrieve_samples(sample_size, model_type):
if model_type == 'cnn':
print("\nLoading train samples")
X_train_samples, train_labels = load_and_preprocess_cnn(X_train,sample_size)
print("\nLoading test samples")
X_test_samples, test_labels = load_and_preprocess_cnn(X_test,sample_size)
print("\nLoading val samples")
X_val_samples, val_labels = load_and_preprocess_cnn(X_val,sample_size)
print('\n')
elif model_type == 'lstm':
print("\nLoading train samples")
X_train_samples, train_labels = load_and_preprocess_lstm(X_train,sample_size)
print("\nLoading test samples")
X_test_samples, test_labels = load_and_preprocess_lstm(X_test,sample_size)
print("\nLoading val samples")
X_val_samples, val_labels = load_and_preprocess_lstm(X_val,sample_size)
print('\n')
elif model_type == "cnnlstm":
print("\nLoading train samples")
X_train_samples, train_labels = load_and_preprocess_lstm(X_train,sample_size)
print("\nLoading test samples")
X_test_samples, test_labels = load_and_preprocess_lstm(X_test,sample_size)
print("\nLoading val samples")
X_val_samples, val_labels = load_and_preprocess_lstm(X_val,sample_size)
print('\n')
print("shape: " + str(X_train_samples[0][0].shape))
print("number of training samples: "+ str(len(X_train_samples)))
print("number of validation samples: "+ str(len(X_val_samples)))
print("number of test samples: "+ str(len(X_test_samples)))
return X_train_samples, X_test_samples, X_val_samples
def create_cnn_lstm_model(input_shape):
model = Sequential()
cnn = tensorflow.keras.applications.DenseNet169(include_top=True, weights=None, input_tensor=None, input_shape=input_shape, pooling=None, classes=2)
# define LSTM model
model.add(tensorflow.keras.layers.TimeDistributed(cnn, input_shape=input_shape))
model.add(LSTM(units = 512, dropout=0.5, recurrent_dropout=0.3, return_sequences = True, input_shape = input_shape))
model.add(LSTM(units = 512, dropout=0.5, recurrent_dropout=0.3, return_sequences = False))
model.add(Dense(units=NUM_CLASSES, activation='sigmoid'))#Compile
model.compile(loss=tensorflow.keras.losses.binary_crossentropy, optimizer='adam', metrics=['accuracy'])
print(model.summary())
return model
def create_model_data_and_labels(X_train_samples, X_val_samples, X_test_samples):
#Prepare samples to work for training the model
labelizer = LabelEncoder()
#prepare training data and labels
x_train = np.array([x[0] for x in X_train_samples])
y_train = np.array([x[1] for x in X_train_samples])
y_train = labelizer.fit_transform(y_train)
y_train = to_categorical(y_train)
#prepare validation data and labels
x_val = np.array([x[0] for x in X_val_samples])
y_val = np.array([x[1] for x in X_val_samples])
y_val = labelizer.transform(y_val)
y_val = to_categorical(y_val)
#prepare test data and labels
x_test = np.array([x[0] for x in X_test_samples])
y_test = np.array([x[1] for x in X_test_samples])
y_test = labelizer.transform(y_test)
y_test = to_categorical(y_test)
return x_train, y_train, x_val, y_val, x_test, y_test, labelizer
#Main loop for testing multiple sample sizes
#choose model type: 'cnn' or 'lstm'
model_type = 'cnnlstm'
n_epochs = 20
patience= 20
es = EarlyStopping(patience=20)
fragment_sizes = [5,10]
start = timeit.default_timer()
ModelData = pd.DataFrame(columns = ['Model Type','Fragment size (s)', 'Time to Compute (s)', 'Early Stopping epoch', 'Training accuracy', 'Validation accuracy', 'Test Accuracy']) #create a DataFrame for storing the results
conf_matrix_data = []
for i in fragment_sizes:
start_per_size = timeit.default_timer()
print(f'\n---------- Model trained on fragments of size: {i} seconds ----------------')
X_train_samples, X_test_samples, X_val_samples = retrieve_samples(i,model_type)
x_train, y_train, x_val, y_val, x_test, y_test, labelizer = create_model_data_and_labels(X_train_samples, X_val_samples, X_test_samples)
if model_type == 'cnn':
model = create_cnn_model(X_train_samples[0][0].shape)
elif model_type == 'lstm':
model = create_lstm_model(X_train_samples[0][0].shape)
elif model_type == 'cnnlstm':
model = create_cnn_lstm_model(X_train_samples[0][0].shape)
history = model.fit(x_train, y_train,
batch_size = 8,
epochs=n_epochs,
verbose=1,
callbacks=[es],
validation_data=(x_val, y_val))
print('Finished training')
early_stopping_epoch = len(history.history['accuracy'])
training_accuracy = history.history['accuracy'][early_stopping_epoch-1-patience]
validation_accuracy = history.history['val_accuracy'][early_stopping_epoch-1-patience]
plot_data(history, i)
predictions = model.predict(x_test)
score = accuracy_score(labelizer.inverse_transform(y_test.argmax(axis=1)), labelizer.inverse_transform(predictions.argmax(axis=1)))
print('Fragment size = ' + str(i) + ' seconds')
print('Accuracy on test samples: ' + str(score))
conf_matrix_data += [(predictions, y_test, i)]
stop_per_size = timeit.default_timer()
time_to_compute = round(stop_per_size - start_per_size)
print ('Time to compute: '+str(time_to_compute))
ModelData.loc[len(ModelData)] = [model_type, i, time_to_compute, early_stopping_epoch, training_accuracy, validation_accuracy, score] #store particular settings configuration, early stoppping epoch and accuracies in dataframe
stop = timeit.default_timer()
print ('\ntime to compute: '+str(stop-start))
Upvotes: 5
Views: 12955
Reputation: 19307
I believe the input_shape is (128, 216, 1)
The issue here is that you don't have a time-axis to time distribute your CNN (DenseNet169) layer over.
In this step -
tensorflow.keras.layers.TimeDistributed(cnn, input_shape=(128,216,1)))
You are passing the 128 dimension axis as a time-axis. That means each of the CNN (DenseNet169) is left with a input shape of (216,1)
, which is not an image and therefore throws an error because it's expecting 3D tensors (images) and not 2D tensors.
Your input shape needs to be a 4D tensor something like - (10, 128, 216, 1)
, so that the 10
becomes the time axis (for time distributing), and (128, 216, 1)
becomes an image input for the CNN (DenseNet169).
IIUC, your data contains n audio files, each file containing a variable number of mel-spectrogram images.
tf.raggedtensors
to be able to work with variable tensor shapes as inputs to the modelragged=True
None
as the time distributed axis shape while defining the modelLet's start with a sample dataset -
import tensorflow as tf
from tensorflow.keras import layers, Model, utils, applications
#Assuming there are 5 audio files
num_audio = 5
data = []
#Create a random number of mel-spectrograms for each audio file
for i in range(num_audio):
n_images = np.random.randint(4,10)
data.append(np.random.random((n_images,128,216,1)))
print([i.shape for i in data])
[(5, 128, 216, 1),
(5, 128, 216, 1),
(9, 128, 216, 1),
(6, 128, 216, 1),
(4, 128, 216, 1)]
So, your data should be looking something like this. Here, I have a dummy dataset with 5 audio files, first one has 5 images of shape (128,216,1)
, while the last one has 4 images of the same shape.
Next, let's convert and store these are ragged tensors. Ragged tensors allow variable-length objects to be stored, in this case, a variable number of images. Read more about them here.
#Convert each set of images (for each audio) to tensors and then a ragged tensor
tensors = [tensorflow.convert_to_tensor(i) for i in data]
X_train = tensorflow.ragged.stack(tensors).to_tensor()
#Creating dummy y_train, one for each audio files
y_train = tensorflow.convert_to_tensor(np.random.randint(0,2,(5,2)))
I am using a functional API
since I find it more readable and works better with an explicit input layer, but you can use input layers in Sequential API
as well. Feel free to convert it to your preference.
Notice that I am using (None,128,216,1)
as input shape. This creates 5 channels (first implicit one for batches) as - (Batch, audio_files, h, w, channels)
I have a dummy LSTM layer to showcase how the architecture works, feel free to stack more layers. Also, do note, that your DenseNet169
is only returning 2 features. And therefore your TimeDistributed
layers is returning (None, None, 2)
shaped tensor, where first None
is the number of audio files, and the second None
is the number of images (time axis). Therefore, do choose your next layers accordingly as 512 LSTM cells may be too much :)
#Create model
inp = layers.Input((None,128,216,1), ragged=True)
cnn = tensorflow.keras.applications.DenseNet169(include_top=True,
weights=None,
input_tensor=None,
input_shape=(128,216,1), #<----- input shape for cnn is just the image
pooling=None, classes=2)
#Feel free to modify these layers!
x = layers.TimeDistributed(cnn)(inp)
x = layers.LSTM(8)(x)
out = layers.Dense(2)(x)
model = Model(inp, out)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics='accuracy')
utils.plot_model(model, show_shapes=True, show_layer_names=False)
The next step is simply to train. Feel free to add your own parameters.
model.fit(X_train, y_train, epochs=2)
Epoch 1/2
WARNING:tensorflow:5 out of the last 5 calls to <function Model.make_train_function.<locals>.train_function at 0x7f8e55b4fe50> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
1/1 [==============================] - 37s 37s/step - loss: 3.4057 - accuracy: 0.4000
Epoch 2/2
1/1 [==============================] - 16s 16s/step - loss: 3.3544 - accuracy: 0.4000
Hope that helps.
Upvotes: 9