Reputation: 365
I am trying to create a clustered heatmap (with a dendrogram) using plotly in Python. The one they have made in their website does not scale well, I have come to various solutions, but most of them are in R or JavaScript. I am trying to create a heatmap with a dendrogram from the left side of the heatmap only, showing clusters across the y axis (from the hierarchical clustering). A really good looking example is this one: https://chart-studio.plotly.com/~jackp/6748. My purpose is to create something like this, but only with the left-side dendrogram. If someone can implement something like this in Python, I will be really grateful!
Let the data be X = np.random.randint(0, 10, size=(120, 10))
Upvotes: 4
Views: 6450
Reputation: 1
can also use seabornes clustermap https://seaborn.pydata.org/generated/seaborn.clustermap.html
Upvotes: 0
Reputation: 379
dash_bio.Clustergram
function in dash_bio
package.import pandas as pd
import dash_bio as dashbio
X = np.random.randint(0, 10, size=(120, 10))
dashbio.Clustergram(
data=X,
# row_labels=rows,
# column_labels=columns,
cluster='row',
color_threshold={
'row': 250,
'col': 700
},
height=800,
width=700,
color_map= [
[0.0, '#636EFA'],
[0.25, '#AB63FA'],
[0.5, '#FFFFFF'],
[0.75, '#E763FA'],
[1.0, '#EF553B']
]
)
plotly.figure_factory.create_dendrogram
combined with plotly.graph_objects.Heatmap
as in plotly document
the example is not a dendrogram heat map but rather a pair wised distance heat map, you can use the two function to create dendrogram heat map though.Upvotes: 1
Reputation: 61104
The following suggestion draws on elements from both Dendrograms in Python and chart-studio.plotly.com/~jackp. This particular plot uses your data X = np.random.randint(0, 10, size=(120, 10))
. One thing that the linked approaches had in common, was, in my opinion, that the datasets and data munging procedures were a bit messy. So I decided to build the following figure on a pandas dataframe with df = pd.DataFrame(X)
to hopefully make everything a bit clearer
import plotly.graph_objects as go
import plotly.figure_factory as ff
import numpy as np
import pandas as pd
from scipy.spatial.distance import pdist, squareform
import random
import string
X = np.random.randint(0, 10, size=(120, 10))
df = pd.DataFrame(X)
# Initialize figure by creating upper dendrogram
fig = ff.create_dendrogram(df.values, orientation='bottom')
fig.for_each_trace(lambda trace: trace.update(visible=False))
for i in range(len(fig['data'])):
fig['data'][i]['yaxis'] = 'y2'
# Create Side Dendrogram
# dendro_side = ff.create_dendrogram(X, orientation='right', labels = labels)
dendro_side = ff.create_dendrogram(X, orientation='right')
for i in range(len(dendro_side['data'])):
dendro_side['data'][i]['xaxis'] = 'x2'
# Add Side Dendrogram Data to Figure
for data in dendro_side['data']:
fig.add_trace(data)
# Create Heatmap
dendro_leaves = dendro_side['layout']['yaxis']['ticktext']
dendro_leaves = list(map(int, dendro_leaves))
data_dist = pdist(df.values)
heat_data = squareform(data_dist)
heat_data = heat_data[dendro_leaves,:]
heat_data = heat_data[:,dendro_leaves]
heatmap = [
go.Heatmap(
x = dendro_leaves,
y = dendro_leaves,
z = heat_data,
colorscale = 'Blues'
)
]
heatmap[0]['x'] = fig['layout']['xaxis']['tickvals']
heatmap[0]['y'] = dendro_side['layout']['yaxis']['tickvals']
# Add Heatmap Data to Figure
for data in heatmap:
fig.add_trace(data)
# Edit Layout
fig.update_layout({'width':800, 'height':800,
'showlegend':False, 'hovermode': 'closest',
})
# Edit xaxis
fig.update_layout(xaxis={'domain': [.15, 1],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'ticks':""})
# Edit xaxis2
fig.update_layout(xaxis2={'domain': [0, .15],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks':""})
# Edit yaxis
fig.update_layout(yaxis={'domain': [0, 1],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks': ""
})
# # Edit yaxis2
fig.update_layout(yaxis2={'domain':[.825, .975],
'mirror': False,
'showgrid': False,
'showline': False,
'zeroline': False,
'showticklabels': False,
'ticks':""})
fig.update_layout(paper_bgcolor="rgba(0,0,0,0)",
plot_bgcolor="rgba(0,0,0,0)",
xaxis_tickfont = dict(color = 'rgba(0,0,0,0)'))
fig.show()
Upvotes: 4