Reputation: 33
I want to make all possible combinations of numpy arrays of different sizes into a bigger matrix. For examples a = np.array([1, 2, 3, 4, 5])
, b = np.array([6, 7, 8])
, c = np.array([9, 10, 3, 4, 5])
the output should be:
array([[1., 6., 9.],
[2., 7., 10.],
[3., 8., 3.],
[4., 6., 4.],
[5., 7., 5.],
[1., 8., 10.],
[2., 6., 3.],
[3., 7., 4.],
[4., 8., 5.],
[5., 6., 9.],
.....
[5., 8., 5.])
to cover all possible combinations. Note that array b values are being repeated. I have tried making array of ones and then use broadcasting principle.
arr= np.ones((75,3))
arr[:,0]=arr[:,0]*a
arr[:,1]=arr[:,1]*b
arr[:,2]=arr[:,2]*c
But getting operands could not be broadcast together with shapes.
(Edit) need a solution that can have dynamic number of arrays of variable length. Not necessarily for three arrays.
Upvotes: 3
Views: 703
Reputation: 12397
I think you are looking for meshgrid
, which works for ANY number of arrays now by simply adding them to arguments:
np.array(np.meshgrid(a,b,c)).T.reshape(-1,3)
And if you have a list of arrays:
l = [a,b,c]
np.array(np.meshgrid(*l)).T.reshape(-1,len(l))
output:
array([[ 1, 6, 9],
[ 1, 7, 9],
[ 1, 8, 9],
[ 2, 6, 9],
[ 2, 7, 9],
[ 2, 8, 9],
[ 3, 6, 9],
[ 3, 7, 9],
[ 3, 8, 9],
[ 4, 6, 9],
[ 4, 7, 9],
[ 4, 8, 9],
[ 5, 6, 9],
[ 5, 7, 9],
[ 5, 8, 9],
[ 1, 6, 10],
[ 1, 7, 10],
[ 1, 8, 10],
[ 2, 6, 10],
[ 2, 7, 10],
[ 2, 8, 10],
[ 3, 6, 10],
[ 3, 7, 10],
[ 3, 8, 10],
[ 4, 6, 10],
[ 4, 7, 10],
[ 4, 8, 10],
[ 5, 6, 10],
[ 5, 7, 10],
[ 5, 8, 10],
[ 1, 6, 3],
[ 1, 7, 3],
[ 1, 8, 3],
[ 2, 6, 3],
[ 2, 7, 3],
[ 2, 8, 3],
[ 3, 6, 3],
[ 3, 7, 3],
[ 3, 8, 3],
[ 4, 6, 3],
[ 4, 7, 3],
[ 4, 8, 3],
[ 5, 6, 3],
[ 5, 7, 3],
[ 5, 8, 3],
[ 1, 6, 4],
[ 1, 7, 4],
[ 1, 8, 4],
[ 2, 6, 4],
[ 2, 7, 4],
[ 2, 8, 4],
[ 3, 6, 4],
[ 3, 7, 4],
[ 3, 8, 4],
[ 4, 6, 4],
[ 4, 7, 4],
[ 4, 8, 4],
[ 5, 6, 4],
[ 5, 7, 4],
[ 5, 8, 4],
[ 1, 6, 5],
[ 1, 7, 5],
[ 1, 8, 5],
[ 2, 6, 5],
[ 2, 7, 5],
[ 2, 8, 5],
[ 3, 6, 5],
[ 3, 7, 5],
[ 3, 8, 5],
[ 4, 6, 5],
[ 4, 7, 5],
[ 4, 8, 5],
[ 5, 6, 5],
[ 5, 7, 5],
[ 5, 8, 5]])
Upvotes: 2
Reputation: 1253
You can use list comprehension:
arr = np.array([[x,y,z] for x in a for y in b for z in c])
Upvotes: 1