Reputation: 37
I have the following Multi-Index table:
A | B | C | D | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t_1 | t_2 | t_1 | t_2 | t_1 | t_2 | t_1 | t_2 | ||||||||
x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y |
2.2 | 5.1 | 3.4 | 1.8 | 1.5 | 6.7 | 8.1 | 7.5 | 6.1 | 2.1 | 9.3 | 7.1 | 8.2 | 1.1 | 1.4 | 2.5 |
7.9 | 3.2 | 1.1 | 5.3 | 9.3 | 3.1 | 0.9 | 3.2 | 4.1 | 5.1 | 7.7 | 4.3 | 8.1 | 0.4 | 2.4 | 4.1 |
Data Points (x, y)
have been randomly assigned to columns A - D. I want to re-order them by the x
-value at t_1
- shown in italics. The other values don't matter for re-ordering, but are carried along to their new column by the x
-value at t_1
. This means each row will be re-ordered differently.
I want some code which processes the above table to produce:
A | B | C | D | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t_1 | t_2 | t_1 | t_2 | t_1 | t_2 | t_1 | t_2 | ||||||||
x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y |
1.5 | 6.7 | 8.1 | 7.5 | 2.2 | 5.1 | 3.4 | 1.8 | 6.1 | 2.1 | 9.3 | 7.1 | 8.2 | 1.1 | 1.4 | 2.5 |
4.1 | 5.1 | 7.7 | 4.3 | 7.9 | 3.2 | 1.1 | 5.3 | 8.1 | 0.4 | 2.4 | 4.1 | 9.3 | 3.1 | 0.9 | 3.2 |
Upvotes: 1
Views: 123
Reputation: 13349
try with unstack
and groupby
: (only solution I can think of right now)
df1 = df.unstack().unstack()
for col in df1.columns:
a = []
for i,g in df1[col].groupby(level=0):
a.append((i,g.iloc[0]))
get_sortedli = sorted(a, key=lambda x: x[1])
order_col = [f1 for f1,f2 in get_sortedli]
val = (df.iloc[col].reindex(order_col, axis=1, level=0))
df.iloc[col] = val
df:
I have imagined this as a 4 block arrangement(A,B,C,D) problem. After arranging get the values and assign it to the real dataframe.
df1:
Upvotes: 2
Reputation: 15962
Here's an option involving mostly meddling with the shape of the data, sorting and then using the re-shaped values and original df
columns (a MultiIndex) to create the final dataframe:
df2 = df.T.unstack(level=0).T.reset_index(level=0, col_fill='row')
df2 = df2.sort_values([('level_0', 'row'), ('t_1', 'x')], ignore_index=True)
values = df2.drop(('level_0', 'row'), axis=1).values.reshape(2, -1)
df3 = pd.DataFrame(data=values, columns=df.columns) # using original df's columns
Output:
A B C D
t_1 t_2 t_1 t_2 t_1 t_2 t_1 t_2
x y x y x y x y x y x y x y x y
0 1.5 6.7 8.1 7.5 2.2 5.1 3.4 1.8 6.1 2.1 9.3 7.1 8.2 1.1 1.4 2.5
1 4.1 5.1 7.7 4.3 7.9 3.2 1.1 5.3 8.1 0.4 2.4 4.1 9.3 3.1 0.9 3.2
In a more readable but inaccurate table format:
A | B | C | D | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t_1 | t_2 | t_1 | t_2 | t_1 | t_2 | t_1 | t_2 | ||||||||
x | y | x | y | x | y | x | y | x | y | x | y | x | y | x | y |
1.5 | 6.7 | 8.1 | 7.5 | 2.2 | 5.1 | 3.4 | 1.8 | 6.1 | 2.1 | 9.3 | 7.1 | 8.2 | 1.1 | 1.4 | 2.5 |
4.1 | 5.1 | 7.7 | 4.3 | 7.9 | 3.2 | 1.1 | 5.3 | 8.1 | 0.4 | 2.4 | 4.1 | 9.3 | 3.1 | 0.9 | 3.2 |
Upvotes: 2