Reputation: 2158
I have pandas data frame that contains Month and Year values in a yyyy-mm
format. I am using pd.to_sql
to set the data type value to sent it to .db
file.
I keep getting error:
sqlalchemy.exc.StatementError: (builtins.TypeError) SQLite Date type only accepts Python date objects as input.
Is there a way to set 'Date' Data type for 'MonthYear' (yyyy-mm) column? Or it should be set in a VARCHAR? I tried changing it to different types pandas's datetime data type, none of them seem to work.
I don't have any issues with 'full_date', it assigns it properly. Data type for 'full_date' is datetime64[ns]
in pandas.
MonthYear full_date
2015-03 2012-03-11
2015-04 2013-08-19
2010-12 2012-06-29
2012-01 2018-01-01
df.to_sql('MY_TABLE', con=some_connection,
dtype={'MonthYear':sqlalchemy.types.Date(),
'full_date':sqlalchemy.types.Date()})
Upvotes: 0
Views: 472
Reputation: 169274
My opinion is that you shouldn't store unnecessarily the extra column in your database when you can derive it from the 'full_date'
column.
One issue you'll run into is that SQLite doesn't have a DATE
type. So, you need to parse the dates upon extraction with your query. Full example:
import datetime as dt
import numpy as np
import pandas as pd
import sqlite3
# I'm using datetime64[ns] because that's what you say you have
df = pd.DataFrame({'full_date': [np.datetime64('2012-03-11')]})
con = sqlite3.connect(":memory:")
df.to_sql("MY_TABLE", con, index=False)
new_df = pd.read_sql_query("SELECT * FROM MY_TABLE;", con,
parse_dates={'full_date':'%Y-%m-%d'})
Result:
In [111]: new_df['YearMonth'] = new_df['full_date'].dt.strftime('%Y-%m')
In [112]: new_df
Out[112]:
full_date YearMonth
0 2012-03-11 2012-03
Upvotes: 1