Reputation: 63
I'm trying to pass the all of the huggingface's ...ForMaskedLM to the FitBert model for fill-in-the-blank task and see which pretrained yields the best result on the data I've prepared. But in the Reformer module I have this error says that I need to do 'config.is_decoder=False' but I don't really get what this means (This is my first time using huggingface). I tried to pass a ReformerConfig(is_decoder=False) to the model but still get the same error. How can I fix this?
My code:
pretrained_weights = ['google/reformer-crime-and-punishment',
'google/reformer-enwik8']
configurations = ReformerConfig(is_decoder=False)
for weight in pretrained_weights:
print(weight)
model = ReformerForMaskedLM(configurations).from_pretrained(weight)
tokenizer = ReformerTokenizer.from_pretrained(weight)
fb = FitBert(model=model, tokenizer=tokenizer)
predicts = []
for _, row in df.iterrows():
predicts.append(fb.rank(row['question'], options=[row['1'], row['2'], row['3'], row['4']])[0])
print(weight,':', np.sum(df.anwser==predicts) / df.shape[0])
Error:
AssertionError Traceback (most recent call last)
<ipython-input-5-a6016e0015ba> in <module>()
4 for weight in pretrained_weights:
5 print(weight)
----> 6 model = ReformerForMaskedLM(configurations).from_pretrained(weight)
7 tokenizer = ReformerTokenizer.from_pretrained(weight)
8 fb = FitBert(model=model, tokenizer=tokenizer)
/usr/local/lib/python3.7/dist-packages/transformers/modeling_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs)
1032
1033 # Instantiate model.
-> 1034 model = cls(config, *model_args, **model_kwargs)
1035
1036 if state_dict is None and not from_tf:
/usr/local/lib/python3.7/dist-packages/transformers/models/reformer/modeling_reformer.py in __init__(self, config)
2304 assert (
2305 not config.is_decoder
-> 2306 ), "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention."
2307 self.reformer = ReformerModel(config)
2308 self.lm_head = ReformerOnlyLMHead(config)
AssertionError: If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention.
Upvotes: 2
Views: 238
Reputation: 19365
You can override certain model configurations by loading the model config separately and providing it as parameter for the from_pretrained()
method. This will assure that you are using the proper model configuration with the changes you have made:
from transformers import ReformerConfig, ReformerForMaskedLM
config = ReformerConfig.from_pretrained('google/reformer-crime-and-punishment')
print(config.is_decoder)
config.is_decoder=False
print(config.is_decoder)
model = ReformerForMaskedLM.from_pretrained('google/reformer-crime-and-punishment', config=config)
Output:
True
False
Upvotes: 2