Reputation: 25
In a multi-threaded application, if a thread calls fork(), it will copy the state of only that thread. So the child process created would be a single-thread process. If some other thread were to hold a lock required by the thread which called the fork(), that lock would never be released in the child process. This is a problem. To counter this, we can modify the fork() in two ways. Either we can copy all the threads instead of only that single one. Or we can make sure that any lock held by the (other) non-copied threads will be released. So what will be the modified fork() system call in both these cases. And which of these two would be better, or what would be the advantages and disadvantages of either option?
Upvotes: 1
Views: 190
Reputation: 27115
...Or we can make sure that any lock held by the (other) non-copied threads will be released.
That's going to be harder than you realize because a program can implement "locks" entirely in user-mode code, in which case, the OS would have no knowledge of them.
Even if you were careful only to use locks that were known to the OS you still have a more general problem: Creating a new process with just the one thread would effectively be no different from creating a new process with all of the threads and then immediately killing all but one of them.
Read about why we don't kill threads. In a nutshell: Locks aren't the only state that needs to be cleaned up. Any of the threads that existed in the parent but not in the child could, at the moment of the fork call, been in the middle of making a mess that needs to be cleaned up. If that thread doesn't exist in the child, then you've lost the knowledge of what needs to be cleaned up.
we can copy all the threads instead of only that single one...
That also is a potential problem. The one thread that calls fork()
would know when and why fork()
was called, and it would be prepared for the fork call. None of the other threads would have any warning. And, if any of those threads is interacting with something outside of the process (e.g., talking to a remote service) then,where you previously had one client talking to the service, you suddenly have two clients, talking to the same service, and they both think that they are the only one. That's not going to end well.
Don't call fork()
from multi-threaded programs.
In one project I worked on: We had a big multi-threaded program that needed to spawn other processes. How we did it is, we had it spawn a simple, single-threaded "helper" program before it created any new threads. Then, whenever it needed to spawn another process, it sent a message to the helper, and the helper did it.
Upvotes: 0
Reputation: 1068
This is a thorny question.
POSIX has pthread_atfork()
to work through the mess of mixing forks and thread creation. The NOTES section of that man page discusses mutexes etc. However, it acknowledges that getting it right is hard.
The function isn't so much an alternative to fork()
as it is a way to explain to the pthread library how your program needs to be prepared for the use of fork()
.
In general not trying to launch a thread from the child of fork but either exiting that child or calling exec asap, will minimize problems.
This post has a good discussion of pthread_atfork()
.
Upvotes: 0