Reputation: 7011
I have a 2D array. For example:
ary = np.arange(24).reshape(6,4)
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]
I want to break this into smaller 2D arrays, each 2x2, and compute the square root of the sum of each. I actually want to use arbitrary sized sub-arrays, and compute arbitrary functions of them, but I think this question is easier to ask with concrete operations and concrete array sizes, so in this example starting with a 6x4 array and computing the square root of sums of 2x2 sub-arrays, the final result would be a 3x2 array, as follows:
[[3.16, 4.24] # math.sqrt(0+1+4+5) , math.sqrt(2+3+6+7)
[6.48, 7.07] # math.sqrt(8+9+12+13) , math.sqrt(10+11+14+15)
[8.60, 9.05]] # math.sqrt(16+17+20+21), math.sqrt(18+19+22+23)
How can I slice, or split, or do some operation to perform some computation on 2D sub-arrays?
Here is a working, inefficient example of what I'm trying to do:
import numpy as np
a_height = 6
a_width = 4
a_area = a_height * a_width
a = np.arange(a_area).reshape(a_height, a_width)
window_height = 2
window_width = 2
b_height = a_height // window_height
b_width = a_width // window_width
b_area = b_height * b_width
b = np.zeros(b_area).reshape(b_height, b_width)
for i in range(b_height):
for j in range(b_width):
b[i, j] = a[i * window_height:(i + 1) * window_height, j * window_width:(j + 1) * window_width].sum()
b = np.sqrt(b)
print(b)
# [[3.16227766 4.24264069]
# [6.4807407 7.07106781]
# [8.60232527 9.05538514]]
Upvotes: 0
Views: 221
Reputation: 231385
In [2]: ary = np.arange(24).reshape(6,4)
In [3]: ary
Out[3]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]])
While I recommended moving-windows based on as_strided
, we can also divide the array into 'blocks' with reshape and transpose:
In [4]: ary.reshape(3,2,2,2).transpose(0,2,1,3)
Out[4]:
array([[[[ 0, 1],
[ 4, 5]],
[[ 2, 3],
[ 6, 7]]],
[[[ 8, 9],
[12, 13]],
[[10, 11],
[14, 15]]],
[[[16, 17],
[20, 21]],
[[18, 19],
[22, 23]]]])
In [5]: np.sqrt(_.sum(axis=(2,3)))
Out[5]:
array([[3.16227766, 4.24264069],
[6.4807407 , 7.07106781],
[8.60232527, 9.05538514]])
While the transpose makes it easier to visual the blocks that need to be summed, it isn't necessary:
In [7]: np.sqrt(ary.reshape(3,2,2,2).sum(axis=(1,3)))
Out[7]:
array([[3.16227766, 4.24264069],
[6.4807407 , 7.07106781],
[8.60232527, 9.05538514]])
np.lib.stride_tricks.sliding_window
doesn't give us as much direct control as I thought, but
np.lib.stride_tricks.sliding_window_view(ary,(2,2))[::2,::2]
gives the same result as Out[4]
.
In [13]: np.sqrt(np.lib.stride_tricks.sliding_window_view(ary,(2,2))[::2,::2].sum(axis=(2,3)))
Out[13]:
array([[3.16227766, 4.24264069],
[6.4807407 , 7.07106781],
[8.60232527, 9.05538514]])
[7] is faster.
In general, it can be done like this:
a_height = 15
a_width = 16
a_area = a_height * a_width
a = np.arange(a_are).reshape(a_height, a_width)
window_height = 3 # must evenly divide a_height
window_width = 4 # must evenly divide a_width
b_height = a_height // window_height
b_width = a_width // window_width
b = a.reshape(b_height, window_height, b_width, window_width).transpose(0,2,1,3)
# or, assuming you want sum or another function that takes `axis` argument
b = a.reshape(b_height, window_height, b_width, window_width).sum(axis=(1,3))
Upvotes: 1