Reputation: 65
I have a dataframe containing one column. I want to split it into multiple columns
106
B-PER
I-PER
I-PER
B-PER
I-PER
I-PER
I-PER
B-PER
B-PROPH
109
B-PER
B-PER
I-PER
B-PER
I-PER
B-PER
I-PER
B-PER
I-PER
B-PROPH
116
B-PER
I-PER
I-PER
B-PER
B-PER
B-PER
B-PER
I want to split this column into multiple columns when integer value come. I know i have to iterate over rows but I don't know how to split it. required output is:
106 109 116
B-PER B-PER B-PER
I-PER B-PER I-PER
I-PER I-PER I-PER
B-PER B-PER B-PER
I-PER I-PER B-PER
I-PER B-PER B-PER
I-PER I-PER B-PER
B-PER B-PER
B-PROPH I=PER
PROPH
Upvotes: 3
Views: 106
Reputation: 88226
Here's one approach using pivot_table
, assuming your column is called 'col'
:
g = df.col.str.isnumeric().cumsum()
out = df.pivot_table(df,
columns=g,
index=g.reset_index().groupby('col').cumcount(),
aggfunc='first',
fill_value='')
out.columns = out.loc[0]
out.drop(0)
0 106 109 116
1 B-PER B-PER B-PER
2 I-PER B-PER I-PER
3 I-PER I-PER I-PER
4 B-PER B-PER B-PER
5 I-PER I-PER B-PER
6 I-PER B-PER B-PER
7 I-PER I-PER B-PER
8 B-PER B-PER
9 B-PROPH I-PER
10 B-PROPH
Upvotes: 1
Reputation: 23099
First create a key
column and a new index using cumcount()
finally, we can use unstack
we use iloc[1:]
to remove the column name from the first row.
df['key'] = pd.to_numeric(df[0],errors='coerce').ffill()
df1 = df.set_index([df.groupby('key').cumcount(),'key']).unstack(1).iloc[1:].droplevel(0,1)
key 106.0 109.0 116.0
1 B-PER B-PER B-PER
2 I-PER B-PER I-PER
3 I-PER I-PER I-PER
4 B-PER B-PER B-PER
5 I-PER I-PER B-PER
6 I-PER B-PER B-PE
7 I-PER I-PER NaN
8 B-PER B-PER NaN
9 B-PROPH I-PER NaN
10 NaN B-PROPH NaN
Upvotes: 1
Reputation: 862491
Use:
#test numeric values
m = df.A.astype(str).str.isnumeric()
#repeat only numeric values to groups
df['g'] = df.A.where(m).ffill()
#filter out rows without numeric (because repeated)
df = df[~m]
#reshape
df1 = df.set_index([df.groupby('g').cumcount(), 'g'])['A'].unstack(fill_value='')
print (df1)
g 106 109 116
0 B-PER B-PER B-PER
1 I-PER B-PER I-PER
2 I-PER I-PER I-PER
3 B-PER B-PER B-PER
4 I-PER I-PER B-PER
5 I-PER B-PER B-PER
6 I-PER I-PER B-PER
7 B-PER B-PER
8 B-PROPH I-PER
9 B-PROPH
Upvotes: 2