Reputation: 113
After concatenating four multindexed tables with yearly kg/ha data I end up with a dataframe containing 22617 rows and 144 columns. What I want to do is to find the maximum of each index/year combination to have a dataframe with 36 columns. Here is an example of the data with two columns of two of the initial dataframes:
Y1980 Y1981 Y1980 Y1981
FID_CATCHM CCA_2 GRIDCODE
0 1059.0 2 21.70426 22.058224 21.70426 22.058224
3 21.70426 22.058224 0.00000 0.000000
4 0.00000 0.000000 21.70426 22.058224
1 1059.0 2 0.00000 0.000000 21.70426 22.058224
4 21.70426 22.058224 21.70426 22.058224
2 1001.0 2 20.71299 21.058432 20.71299 21.058432
3 0.00000 0.000000 20.71299 21.058432
1054.0 2 20.25414 20.283833 20.25414 20.283833
4 0.00000 0.000000 20.25414 20.283833
1059.0 2 21.70426 22.058224 21.70426 22.058224
3 21.70426 22.058224 21.70426 22.058224
4 21.70426 22.058224 21.70426 22.058224
3 1059.0 1 21.70426 22.058224 0.00000 0.000000
2 21.70426 22.058224 21.70426 22.058224
3 21.70426 22.058224 21.70426 22.058224
4 21.70426 22.058224 21.70426 22.058224
4 1058.0 1 0.00000 0.000000 23.79386 24.201496
2 23.79386 24.201496 23.79386 24.201496
3 0.00000 0.000000 0.00000 0.000000
4 23.79386 24.201496 23.79386 24.201496
What I tried to do is to use a mask
df_max = (df
.groupby(['FID_CATCHM',
'CCA_2', 'GRIDCODE'])
.max())
df_mask = df_max.max(axis=1).to_frame('maximum')
but the output is identical to the concatenated dataframe. How can this be done? I appreciate every help.
Upvotes: 1
Views: 109
Reputation: 862791
I think you need max
per columns and if necessary then per MultiIndex:
df = df.max(level=0, axis=1).max(level=[0,1,2], axis=0)
Upvotes: 3