Reputation: 103
How to subset similar columns in pandas based on keywords like A B C D. Now I have taken this as example is there any better way if new columns were given and logic should work.
df
A1 A2 A3 B1 B2 B3 C1 C2 D1 D2 D3 D4
1 a x 1 a x 3 c 7 d s 4
2 b 5 2 b 5 4 d s c 7 d
3 c 7 3 c 7 1 a x 1 a x
4 d s 4 d s b 5 2 b s 7
Upvotes: 0
Views: 471
Reputation: 4761
You can use pandas.Index.groupby
groups = df.columns.groupby(df.columns.str[0])
#{'A': ['A1', 'A2', 'A3'],
# 'B': ['B1', 'B2', 'B3'],
# 'C': ['C1', 'C2'],
# 'D': ['D1', 'D2', 'D3', 'D4']}
Then you can access data this way:
df[groups['B']]
# B1 B2 B3
#0 1 a x
#1 2 b 5
#2 3 c 7
#3 4 d s
Keep in mind groups
is a dict
, so you can use any dict
method too.
Upvotes: 1
Reputation: 5032
Another approach can be to use df.columns
in conjuction with str.contains
a_col_lst = df.columns[df.columns.str.contains('A')]
b_col_lst = df.columns[df.columns.str.contains('B')]
df_A = df.loc[a_col_lst]
df_B = df.loc[b_col_lst]
You can apply regex as well within columns.str.contains
Upvotes: 0
Reputation: 521178
You could use filter
along with a regex pattern, e.g.
df_A = df.filter(regex=(r'^A.*'))
You could also use select
along with startswith
:
df_A = df.select(lambda col: col.startswith('A'), axis=1)
Upvotes: 0