Reputation: 3
I am looking to scrape the coin table from link and create a CSV file datewise. For every new coin update, a new entry at the top should be created in the existing data file.
Desired output
Coin,Pings,...Datetime
BTC,25,...07:17:05 03/18/21
I haven't reached far but below is my attempt at it
from selenium import webdriver
import numpy as np
import pandas as pd
firefox = webdriver.Firefox(executable_path="/usr/local/bin/geckodriver")
firefox.get('https://agile-cliffs-23967.herokuapp.com/binance/')
rows = len(firefox.find_elements_by_xpath("/html/body/div/section[2]/div/div/div/div/table/tr"))
columns = len(firefox.find_elements_by_xpath("/html/body/div/section[2]/div/div/div/div/table/tr[1]/th"))
df = pd.DataFrame(columns=['Coin','Pings','Net Vol BTC','Net Vol per','Recent Total Vol BTC', 'Recent Vol per', 'Recent Net Vol', 'Datetime'])
for r in range(1, rows+1):
for c in range(1, columns+1):
value = firefox.find_element_by_xpath("/html/body/div/section[2]/div/div/div/div/table/tr["+str(r)+"]/th["+str(c)+"]").text
print(value)
# df.loc[i, ['Coin']] =
Upvotes: 0
Views: 211
Reputation: 9639
Since the data is loaded dynamically you can retrieve it directly from the source, no Selenium
needed. It will return json with rows with |
-delimited values that need to be split and can be appended to the DataFrame
. Since the site updates once per minute, you can wrap everything in a while True
that makes the code run every 60 seconds:
import requests
import time
import json
import pandas as pd
headers = ['Coin','Pings','Net Vol BTC','Net Vol %','Recent Total Vol BTC', 'Recent Vol %', 'Recent Net Vol', 'Datetime (UTC)']
df = pd.DataFrame(columns=headers)
s = requests.Session()
starttime = time.time()
while True:
response = s.get('https://agile-cliffs-23967.herokuapp.com/ok', headers={'Connection': 'keep-alive'})
d = json.loads(response.text)
rows = [str(i).split('|') for i in d['resu'][:-1]]
if rows:
data = [dict(zip(headers, l)) for l in rows]
df = df.append(data, ignore_index=True)
df.to_csv('filename.csv', index=False)
time.sleep(60.0 - ((time.time() - starttime) % 60.0))
Upvotes: 1
Reputation: 2293
You can append row data to a DataFrame by putting it into a dictionary:
# We reuse the headers when building dicts below
headers = ['Coin','Pings','Net Vol BTC','Net Vol per','Recent Total Vol BTC', 'Recent Vol per', 'Recent Net Vol', 'Datetime']
df = pd.DataFrame(columns=headers)
for r in range(1, rows+1):
data = [firefox.find_element_by_xpath("/html/body/div/section[2]/div/div/div/div/table/tr["+str(r)+"]/th["+str(c)+"]").text \
for c in range(1, columns+1)]
row_dict = dict(zip(headers, data))
df = df.append(row_dict, ignore_index=True)
Upvotes: 0