Reputation: 399
How can I add the values from dataframe A
to a new column (sum
) in dataframe B
that contains the given pairs of dataframe A
? Preferably with a UDF?
output should look like this:
dataframe A:
|id|value|
|--|-----|
|1 | 10|
|2 | 0.3|
|3 | 100|
dataframe B:(with added column sum
)
|src|dst|sum |
|---|---|-----|
|1 |2 |10.3 |
|2 |3 |100.3|
|3 |1 |110 |
I've tried this
dfB = dfB.withColumn('sum', sum(dfB.source,dfB.dst,dfA))
def sum(src,dst,dfA):
return dfA.filter(dfA.id == src).collect()[0][1][0] + dfA.filter(dfA.id == dst).collect()[0][1][0]
Upvotes: 0
Views: 1064
Reputation: 32640
Basically you need to join the 2 dataframes on condition (id = src OR id = dst)
then group by to sum the column value
:
from pyspark.sql import functions as F
output = df_a.join(
df_b,
(F.col("id") == F.col("src")) | (F.col("id") == F.col("dst"))
).groupBy("src", "dst").agg(F.sum("value").alias("sum"))
output.show()
#+---+---+-----+
#|src|dst| sum|
#+---+---+-----+
#| 2| 3|100.3|
#| 1| 2| 10.3|
#| 3| 1|110.0|
#+---+---+-----+
Upvotes: 1
Reputation: 86
If dfA
is small enough for a broadcast join, then then this should work:
dfB.join(dfA, how="left", on=F.col("src") == F.col("id")).select(
"src", "dst", F.coalesce(F.col("value"), F.lit(0)).alias("v1")
).join(dfA, how="left", on=F.col("src") == F.col("id")).select(
"src", "dst", (F.col("v1") + F.coalesce(F.col("value"), F.lit(0))).alias("sum")
)
You can remove .coalesce()
, if the id column contains every src and dst value. There's a few ways to functional this, but your best bet may be using .transform()
.
def join_sum(join_df):
def _(df):
return (
df.join(join_df, how="left", on=F.col("src") == F.col("id"))
.select("src", "dst", F.coalesce(F.col("value"), F.lit(0)).alias("v1"))
.join(join_df, how="left", on=F.col("src") == F.col("id"))
.select(
"src",
"dst",
(F.col("v1") + F.coalesce(F.col("value"), F.lit(0))).alias("sum"),
)
)
return _
dfB.transform(join_sum(dfA))
Upvotes: 1