Reputation: 81
I have a xts file with monthly returns for 17 industry portfolios. The data looks as follows:
Cars Chems Clths Cnstr Cnsum Durbl FabPr Finan Food Machn Mines Oil Other Rtail Steel Trans
1926-07-31 4.77 1.20 -0.09 4.20 2.05 1.33 0.61 0.44 0.46 2.06 2.65 -2.57 1.99 1.46 3.05 -0.69
1926-08-31 -1.11 3.55 3.57 0.85 4.10 0.75 -0.49 8.84 4.72 5.57 1.16 3.85 4.81 0.63 -0.58 4.96
1926-09-30 -3.39 1.85 -4.89 -1.06 2.50 1.27 -3.10 -2.55 1.66 0.52 1.44 -4.93 -2.09 -1.20 2.28 0.06
1926-10-31 -10.66 -9.15 0.49 -6.49 -1.41 -5.02 -3.92 -4.40 -4.79 -4.52 5.73 0.23 -3.50 -2.44 -4.98 -2.79
1926-11-30 -0.73 4.98 2.66 2.91 8.35 0.12 1.36 -0.27 7.04 -0.75 1.13 2.92 -0.47 1.72 1.81 1.38
1926-12-31 5.14 2.59 2.30 3.37 1.96 4.23 2.22 2.40 -1.39 2.93 -1.38 6.39 2.59 3.06 2.17 2.18
Utils
1926-07-31 4.85
1926-08-31 -2.00
1926-09-30 2.06
1926-10-31 -2.98
1926-11-30 5.71
1926-12-31 1.72
My aim is to perform a backtest with a naive portfolio selection rule. Instead of holding an equal-weighted portfolio, i want to assing the weights according to the following naive rule:
Instead of the equal-weighted vector:
w <- c(rep(1/17,17))
This weighting vector works well for getting the portfolio returns. To do so I used this function:
portfolio_returns_tq_rebl <-
returns %>%
tq_portfolio(assets_col = symbol,
returns_col = return,
weights = w, # here i want to have a weighting function?!
col_rename = "returns",
rebalance_on = "months")
I stuck in incorporate a weighting function to a standard backtest script (tidyquant, PerformanceAnalytics, quantmod). In most of these, only optimization-problems can be solved but not simple naive rules.
Does somebody have an idea in how to pursue such a backtest with a simple portfolio selection rule?
Thanks for your help!
Upvotes: 0
Views: 177
Reputation: 1493
If an alternative package were acceptable, too: here is a sketch how to do it with PMwR
, which I maintain. I start with an example dataset: 17 industry portfolios from Kenneth French's website (probably the same dataset that you use).
library("PMwR")
library("NMOF")
P <- French(tempdir(),
"17_Industry_Portfolios_daily_CSV.zip",
frequency = "daily",
price.series = TRUE)
str(P)
## 'data.frame': 24935 obs. of 17 variables:
## $ Food : num 1 1 1 1 1.01 ...
## $ Mines: num 1 1 1.01 1 1 ...
## $ Oil : num 1 1.01 1.01 1.02 1.01 ...
## $ Clths: num 1 1 1 1 1.01 ...
## $ Durbl: num 1 0.989 0.983 0.965 0.964 ...
## $ Chems: num 1 1.01 1.02 1.02 1.03 ...
## $ Cnsum: num 1 1 1.01 1.01 1.01 ...
## $ Cnstr: num 1 1 1 1.01 1.01 ...
## $ Steel: num 1 0.994 1.006 1.007 1.007 ...
## $ FabPr: num 1 0.992 1.002 1.008 1.032 ...
## $ Machn: num 1 0.999 1.003 1.008 1.006 ...
## $ Cars : num 1 0.999 1.009 1.018 1.019 ...
## $ Trans: num 1 1 1 1 1 ...
## $ Utils: num 1 1.01 1.01 1.02 1.02 ...
## $ Rtail: num 1 1 1 0.998 0.992 ...
## $ Finan: num 1 1.01 1.01 1.01 1 ...
## $ Other: num 1 1 1 1.01 1.01 ...
Backtests can be run with function btest
. The main "ingredient" of a backtest is
a "signal" function that is called at any instant of time and returns the desired portfolio. An example: the function here looks back 250 days, computes the returns of the assets and then keeps those assets that have an above-median return.
above_median <- function() {
## get the most recent 250 days
H <- Close(n = 250)
## compute total return of industries
R <- H[nrow(H), ] / H [1L, ]
## include only those with an above-median return
include <- R > median(R)
w <- numeric(ncol(H))
w[include] <- 1/sum(include)
w
}
This function is passed to btest
with the instruction to call it every quarter.
bt <- btest(prices = list(as.matrix(P)),
timestamp = as.Date(row.names(P)),
signal = above_median,
do.signal = "lastofquarter",
b = 250, ## burnin
initial.cash = 100,
convert.weights = TRUE)
You can analyse the results.
summary(NAVseries(bt))
journal(bt)
Update, following the comment: btest
does not impose restrictions on data frequency. Here is the example with monthly data, starting with monthly returns.
P <- French(tempdir(),
"17_Industry_Portfolios_CSV.zip",
price.series = FALSE)
head(P) ## returns
## Food Mines Oil Clths Durbl Chems Cnsum Cnstr
## 1926-07-31 0.0048 0.0378 -0.0141 0.0602 -0.0162 0.0846 0.0142 0.0231
## 1926-08-31 0.0291 0.0069 0.0360 0.0015 -0.0196 0.0570 0.0584 0.0433
## ....
Transform the returns into total-return series:
P <- apply(P + 1, 2, cumprod)
head(P) ## returns => 'prices'
## Food Mines Oil Clths Durbl Chems Cnsum
## 1926-07-31 1.004800 1.037800 0.9859000 1.060200 0.9838000 1.084600 1.014200
## 1926-08-31 1.034040 1.044961 1.0213924 1.061790 0.9645175 1.146422 1.073429
Adjust the signal function for monthly data:
above_median <- function() {
## get the most recent 12 months
H <- Close(n = 12)
## compute total return of industries
R <- H[nrow(H), ] / H [1L, ]
## include only those with an above-median return
include <- R > median(R)
w <- numeric(ncol(H))
w[include] <- 1/sum(include)
w
}
Run the backtest, with an appropriate burnin b
.
bt <- btest(prices = list(as.matrix(P)),
timestamp = as.Date(row.names(P)),
signal = above_median,
do.signal = "lastofquarter",
b = 12, ## burnin
initial.cash = 100,
convert.weights = TRUE)
unique(journal(bt)$timestamp) ## timestamps of trades
## [1] "1927-09-30" "1927-12-31" "1928-03-31" "1928-06-30" "1928-09-30"
## [6] "1928-12-31" "1929-03-31" "1929-06-30" "1929-09-30" "1929-12-31"
## ....
Upvotes: 2