Reputation: 233
how can I concat two dataframes with the same multi index in the following example?
Dataframe1:
EOAN
Close
DateTime Stock
2021-02-27 EOAN 8.450
2021-03-06 EOAN 8.436
2021-03-13 EOAN 8.812
2021-03-20 EOAN 8.820
2021-03-24 EOAN 9.084
Dataframe2:
SAP
Close
DateTime Stock
2021-02-27 SAP 102.06
2021-03-06 SAP 101.78
2021-03-13 SAP 103.04
2021-03-20 SAP 103.60
2021-03-24 SAP 103.06
0 1
I get following result, when the code gets executed:
DateTime Stock
2021-02-27 EOAN NaN 8.450
SAP 102.06 NaN
2021-03-06 EOAN NaN 8.436
SAP 101.78 NaN
2021-03-13 EOAN NaN 8.812
SAP 103.04 NaN
2021-03-20 EOAN NaN 8.820
SAP 103.60 NaN
2021-03-24 EOAN NaN 9.084
SAP 103.06 NaN
I get the dataframe like this:
for stock in stocks:
df = pandas.DataFrame(app.data, columns=['DateTime', 'Close'])
df['DateTime'] = pandas.to_datetime(df['DateTime'], yearfirst=False)
df['Stock'] = my_stock
df = df.set_index(['DateTime', 'Stock'])
app.data.clear()
if df_all is None:
df_all = df
else:
df_all = pandas.concat([df,df_all], axis = 1)
df_all.stack()
print(df_all)
What I try to get is the following result, that also works with more than two stocks:
DateTime Stock Close
2021-02-27 EOAN 8.450
SAP 102.06
2021-03-06 EOAN 8.436
SAP 101.78
2021-03-13 EOAN 8.812
SAP 103.04
2021-03-20 EOAN 8.820
SAP 103.60
2021-03-24 EOAN 9.084
SAP 103.06
Upvotes: 0
Views: 1181
Reputation: 1439
Sample data:
df1 = pd.DataFrame.from_dict({'Close': {('2021-02-27', 'EOAN'): 8.45,
('2021-03-06', 'EOAN'): 8.436,
('2021-03-13', 'EOAN'): 8.812,
('2021-03-20', 'EOAN'): 8.82,
('2021-03-24', 'EOAN'): 9.084}})
df2 = pd.DataFrame({'Close': {('2021-02-27', 'SAP'): 102.06,
('2021-03-06', 'SAP'): 101.78,
('2021-03-13', 'SAP'): 103.04,
('2021-03-20', 'SAP'): 103.6,
('2021-03-24', 'SAP'): 103.06}})
Concatenating along the index will create a MultiIndex
as the union of the indices of df1
and df2
. To get the desired output you may want to use sort_index()
after concatenation:
pd.concat([df1, df2], axis=0).sort_index()
Upvotes: 2