Reputation: 37
I am working on 2 dataarrays with time, latitude and longitude dimensions.
Data1 looks like:
print (data1)
<xarray.DataArray (lon: 20, lat: 40, time: 2880)>
array([[[6.02970212, 4.49268718, 2.47512044, ..., 7.09662201,
0.34438006, 0.664115 ]]])
Coordinates:
* lon (lon) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
* lat (lat) int32 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39
* time (time) datetime64[ns] 2017-06-01 ... 2017-07-30T23:30:00
Data2 looks like:
print (data2)
<xarray.DataArray (lon: 20, lat: 40, time: 2880)>
array([[[1.60607837, 3.07589422, 6.26158588, ..., 6.95746878,
0.51368952, 1.45280591]]])
Coordinates:
* lon (lon) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
* lat (lat) int32 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39
* time (time) datetime64[ns] 2017-08-01 ... 2017-09-29T23:30:00
The "lon" and "lat" dimensions are similar in both data arrays. Which is not the case for the "time" dimension. I want to create a new data array that combine both data1 and data2. So the new data array (data3) will look like:
print(data3)
<xarray.DataArray (lon: 20, lat: 40, time: 5808)>
array([[[4.82000138, 8.13537618, 2.39793625, ..., 2.03778308,
4.13311001, 5.57075556]]])
Coordinates:
* lon (lon) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
* lat (lat) int32 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39
* time (time) datetime64[ns] 2017-06-01 ... 2017-09-29T23:30:00
Any idea to do so?
This is a code to regenerate data1 and data2:
from datetime import timedelta
import xarray as xr
import numpy as np
precipitation = 10 * np.random.rand(20, 40, 2880)
lon = range(20)
lat = range(40)
time1 = np.arange('2017-06-01', '2017-07-31',
timedelta(minutes=30),dtype='datetime64[ns]')
time2 = np.arange('2017-08-01', '2017-09-30',
timedelta(minutes=30),dtype='datetime64[ns]')
data1 =xr.DataArray(
data=precipitation,
dims=["lon","lat","time"],
coords=[lon,lat,time1]
)
print (data1)
data2 =xr.DataArray(
data=precipitation,
dims=["lon","lat","time"],
coords=[lon,lat,time2]
)
print (data2)
Upvotes: 0
Views: 1244
Reputation: 1314
Here the snippet you need:
time3 = np.concatenate((time1, time2), dtype='datetime64[ns]')
data3 = xr.DataArray(
data=10 * np.random.rand(20, 40, len(time3)),
dims=["lon", "lat", "time"],
coords=[lon, lat, time3]
)
print (data3)
This is my output:
<xarray.DataArray (lon: 20, lat: 40, time: 5760)>
Coordinates:
* lon (lon) int32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
* lat (lat) int32 0 1 2 3 4 5 6 7 8 9 ... 30 31 32 33 34 35 36 37 38 39
* time (time) datetime64[ns] 2017-06-01 ... 2017-09-29T23:30:00
Upvotes: 1
Reputation: 7023
If you want to stack your data arrays along the time dimension, you can simply do
data3 = xr.concat([data1, data2], dim="time")
Upvotes: 4