Reputation: 31
What is the time complexity for my code with showing your steps? I tried to figure it out by doing O(T+n+n^2+n) = O(T+2n+n^2) = O(n^2). Am I correct?
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
int T,n, nClone;
cin >> T;
while (T--) { //O(T)
//inputting p[n]
scanf_s("%d", &n);
nClone = n;
int* p = new int[n];
for (int i = 0; i < n; i++) { //O(n)
scanf_s("%d",&p[i]);
}
vector <int>pDash;
while (n != 0) { //O(n^2)
//*itr = largest element in the array
auto itr = find(p, p + n, *max_element(p, p + n));
for (int i = distance(p, itr); i < n; i++) {
pDash.push_back(p[i]);
}
n = distance(p, itr);
}
for (int i = 0; i < nClone; i++) { //O(n)
printf("%d\n", pDash[i]);
}
delete[] p;
}
return 0;
}
Upvotes: 0
Views: 74
Reputation: 186688
Rules of thumb for complexity arithmetics are
O(loop1) + O(loop2)
O(loop1) * O(loop2)
In your case:
while (T--) { // O(T)
..
// nested in "while": O(T) * O(n)
for (int i = 0; i < n; i++) { // O(n)
...
}
// nested in "while": O(T) * O(n)
while (n != 0) { // O(n)
// nested in both "while"s : O(T) * O(n) * O(n)
for (int i = distance(p, itr); i < n; i++) { // O(n)
...
}
}
// nested in "while": O(T) * O(n)
for (int i = 0; i < nClone; i++) { // O(n)
...
}
}
we have:
O(T) * (O(n) + O(n) * O(n) + O(n)) == O(T * n^2)
Upvotes: 2