Reputation: 183
I have a dataframe which demonstrates a hierarchy of meters. A meter has an ID, and can have any number of children, this children can also have children, which can also have children, ad infinitum.
The dataframe has a meter per row, and the level of the child is shown by column. As shown below:
The aim is to convert it to a nested dictionary in the following format:
{
"meters": [
{
"meter_id": "a",
"meter_children": [
{
"meter_id": "b",
"meter_children": []
},
{
"meter_id": "c",
"meter_children": [
{
"meter_id": "d",
"meter_children": []
}
]
},
{
"meter_id": "e",
"meter_children": []
}
]
},
{
"meter_id": "f",
"meter_children": []
},
{
"meter_id": "g",
"meter_children": []
},
{
"meter_id": "h",
"meter_children": []
},
{
"meter_id": "i",
"meter_children": []
},
{
"meter_id": "j",
"meter_children": []
},
{
"meter_id": "k",
"meter_children": []
},
{
"meter_id": "l",
"meter_children": [
{
"meter_id": "m",
"meter_children": []
},
{
"meter_id": "n",
"meter_children": []
},
{
"meter_id": "o",
"meter_children": []
}
]
},
{
"meter_id": "p",
"meter_children": []
},
{
"meter_id": "q",
"meter_children": []
},
{
"meter_id": "r",
"meter_children": []
},
{
"meter_id": "s",
"meter_children": []
},
{
"meter_id": "t",
"meter_children": []
},
{
"meter_id": "u",
"meter_children": []
}
]
}
I have managed to achieve this, using the scary code you can see below (sorry). I was wondering if there is a tool that can do this for you, or if there is a cleaner, more readable way of accomplishing this.
Note this only goes up to a nesting level of 4, but can be easily extended further.
results = {}
list_0 = []
for row in df.values:
counter = 0
for entry in row:
if entry==entry:
entry=str(entry)
if counter==0:
list_0.append({
"meter_id":entry,
"meter_children":[]
})
meter_0 = entry
list_1 = []
if counter==1:
for item in list_0:
if meter_0 in item.values():
list_1.append({
"meter_id":entry,
"meter_children":[]
})
item["meter_children"]=list_1
meter_1=entry
list_2=[]
if counter==2:
for item in list_0:
if meter_0 in item.values():
for item in list_1:
if meter_1 in item.values():
list_2.append({
"meter_id":entry,
"meter_children":[]
})
item["meter_children"]=list_2
meter_3=entry
list_3=[]
if counter==3:
for item in list_0:
if meter_0 in item.values():
for item in list_1:
if meter_1 in item.values():
for item in list_2:
if meter_2 in item.values():
list_3.append({
"meter_id":entry,
"meter_children":[]
})
item["meter_children"]=list_3
meter_4=entry
list_4=[]
counter+=1
results["meters"] = list_0
Upvotes: 0
Views: 88
Reputation: 71451
You can use itertools.groupby
with recursion:
from itertools import groupby as gb
d = [['a', None, None, None, None, None, None, None], [None, 'b', None, None, None, None, None, None], [None, 'c', None, None, None, None, None, None], [None, None, 'd', None, None, None, None, None], [None, 'e', None, None, None, None, None, None], ['f', None, None, None, None, None, None, None], ['g', None, None, None, None, None, None, None], ['h', None, None, None, None, None, None, None], ['i', None, None, None, None, None, None, None], ['j', None, None, None, None, None, None, None], ['k', None, None, None, None, None, None, None], ['l', None, None, None, None, None, None, None], [None, 'm', None, None, None, None, None, None], [None, 'n', None, None, None, None, None, None], [None, 'o', None, None, None, None, None, None], ['p', None, None, None, None, None, None, None], ['q', None, None, None, None, None, None, None], ['r', None, None, None, None, None, None, None], ['s', None, None, None, None, None, None, None], ['t', None, None, None, None, None, None, None], ['u', None, None, None, None, None, None, None]]
def get_tree(d):
r = []
for a, b in gb(d, key=lambda x:x[0] is not None):
if a:
r.extend([{"meter_id":j, "meter_children":[]} for j, *_ in b])
else:
r[-1]['meter_children'] = get_tree([j for _, *j in b])
return r
import json
print(json.dumps({'meters':get_tree(d)}, indent=4))
Output:
{
"meters": [
{
"meter_id": "a",
"meter_children": [
{
"meter_id": "b",
"meter_children": []
},
{
"meter_id": "c",
"meter_children": [
{
"meter_id": "d",
"meter_children": []
}
]
},
{
"meter_id": "e",
"meter_children": []
}
]
},
{
"meter_id": "f",
"meter_children": []
},
{
"meter_id": "g",
"meter_children": []
},
{
"meter_id": "h",
"meter_children": []
},
{
"meter_id": "i",
"meter_children": []
},
{
"meter_id": "j",
"meter_children": []
},
{
"meter_id": "k",
"meter_children": []
},
{
"meter_id": "l",
"meter_children": [
{
"meter_id": "m",
"meter_children": []
},
{
"meter_id": "n",
"meter_children": []
},
{
"meter_id": "o",
"meter_children": []
}
]
},
{
"meter_id": "p",
"meter_children": []
},
{
"meter_id": "q",
"meter_children": []
},
{
"meter_id": "r",
"meter_children": []
},
{
"meter_id": "s",
"meter_children": []
},
{
"meter_id": "t",
"meter_children": []
},
{
"meter_id": "u",
"meter_children": []
}
]
}
Upvotes: 1
Reputation: 2402
You can certainly improve your code to make it more efficient but as far as I know, your problem is too specific for a generic solution, sorry...
To improve your code and generalize it to multiple (unknown) number of levels, I see two solutions:
n
with level n+1
df.iterrows()
Upvotes: 1