Reputation: 426
I have a 4*7 3D bar chart where I would like to increase the gap or spacing of the 7 bars in the y-axis.
Below is my code:
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import numpy as np
# Set plotting style
plt.style.use('seaborn-white')
dz=[]
z0 = np.array([ 1., 3., 11., 8., 7., 6., 6., 6., 5., 4.,
3., 11., 10., 1., 1., 7., 1., 3., 11., 8.,
8., 7., 6., 6., 1., 1., 7., 1.,])
dz.append(z0)
z1 =[ 5., 5., 8., 4., 2., 0., 0., 0., 0., 0., 0.,
1., 6., 5., 7., 2., 1., 3., 11., 8., 8., 7., 6., 6.,
1., 1., 7., 1.,]
dz.append(z1)
z2 =[ 15., 5., 8., 2., 0., 0., 0., 0., 0., 0., 0.,
3., 5., 2., 7., 2., 1., 3., 11., 8., 8., 7., 6., 6.,
1., 1., 7., 1.,]
dz.append(z2)
_zpos = z0*0
xlabels = pd.Index(['X01', 'X02', 'X03', 'X04'], dtype='object')
ylabels = pd.Index(['Y01', 'Y02', 'Y03', 'Y04', 'Y05', 'Y06', 'Y07'], dtype='object')
x = np.arange(xlabels.shape[0])
y = np.arange(ylabels.shape[0])
x_M, y_M = np.meshgrid(x, y, copy=False)
fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, projection='3d')
# Making the intervals in the axes match with their respective entries
ax.w_xaxis.set_ticks(x + 0.5/2.)
ax.w_yaxis.set_ticks(y + 0.5/2.)
# Renaming the ticks as they were before
ax.w_xaxis.set_ticklabels(xlabels)
ax.w_yaxis.set_ticklabels(ylabels)
# Labeling the 3 dimensions
ax.set_xlabel('X label')
ax.set_ylabel('Y label')
ax.set_zlabel('Z label')
# Choosing the range of values to be extended in the set colormap
values = np.linspace(0.2, 1., x_M.ravel().shape[0])
# Selecting an appropriate colormap
colors = ['#FFC04C', 'blue', '#3e9a19',
'#599be5','#bf666f','#a235bf','#848381','#fb90d6','#fb9125']
# Increase the number of segment to 3 by changing the X in 'range(X)' to 3.
for i in range(3):
ax.bar3d(x_M.ravel(), y_M.ravel(), _zpos, dx=0.3, dy=0.3, dz=dz[i],
color=colors[i])
_zpos += dz[i]
#plt.gca().invert_xaxis()
#plt.gca().invert_yaxis()
Segment1_proxy = plt.Rectangle((0, 0), 1, 1, fc="#FFC04C")
Segment2_proxy = plt.Rectangle((0, 0), 1, 1, fc="blue")
Segment3_proxy = plt.Rectangle((0, 0), 1, 1, fc="#3e9a19")
ax.legend([Segment1_proxy,
Segment2_proxy,
Segment3_proxy],['Segment1',
'Segment2',
'Segment3'
])
plt.show()
I have tried to look for solutions but couldn't find any in relation to 3D bar chart. I suppose those solutions for 2D bar chart can't be applied here (or I'm might be wrong) and thus I'm not sure where to start (just started learning matplotlib a day ago). Can someone help please?
Post below edited on 31st March 2021
Thanks Yozhikoff for providing solutions to the above questions but would like to improve the visualisation...
I increased the gap between x-axis, i.e., increasing the gap between X01 and X02 by changing the syntax to
ax.set_box_aspect((10, 3, 1))
and
for i in range(3):
ax.bar3d(x_M.ravel(), y_M.ravel(), _zpos, dx=0.03, dy=0.3, dz=dz[i],
color=colors[i], lightsource=ls)
_zpos += dz[i]
which then generated the figure below:
As you may see that the z-axis is squeezed but if I changed the value for ax.set_box_aspect to (30,3,5), the gap between the x-axis doesn't seem to increase much and the whole figure becomes small.
Any advice?
Upvotes: 0
Views: 838
Reputation: 66
Tested in python 3.11.2
, matplotlib 3.7.1
You can try using the ax.set_box_aspect()
method.
fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, projection='3d')
ax.set_box_aspect((1, 3, 1))
Works especially good combined with carefully selected dx
and dy
arguments of ax.bar3d()
.
There are several ways to further improve the aesthetics:
plt.gca().view_init(elev=15, azim=20)
LightSource
that highlights your plot in a right way
ls = mpl.colors.LightSource(azdeg=30, altdeg=10)
ax.bar3d(..., lightsource=ls)
In your case, I'd do something like this:
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
import numpy as np
import matplotlib as mpl
dz=[]
z0 = np.array([ 1., 3., 11., 8., 7., 6., 6., 6., 5., 4.,
3., 11., 10., 1., 1., 7., 1., 3., 11., 8.,
8., 7., 6., 6., 1., 1., 7., 1.,])
dz.append(z0)
z1 =[ 5., 5., 8., 4., 2., 0., 0., 0., 0., 0., 0.,
1., 6., 5., 7., 2., 1., 3., 11., 8., 8., 7., 6., 6.,
1., 1., 7., 1.,]
dz.append(z1)
z2 =[ 15., 5., 8., 2., 0., 0., 0., 0., 0., 0., 0.,
3., 5., 2., 7., 2., 1., 3., 11., 8., 8., 7., 6., 6.,
1., 1., 7., 1.,]
dz.append(z2)
_zpos = z0*0
xlabels = pd.Index(['X01', 'X02', 'X03', 'X04'], dtype='object')
ylabels = pd.Index(['Y01', 'Y02', 'Y03', 'Y04', 'Y05', 'Y06', 'Y07'], dtype='object')
x = np.arange(xlabels.shape[0])
y = np.arange(ylabels.shape[0])
x_M, y_M = np.meshgrid(x, y, copy=False)
fig = plt.figure(figsize=(7, 7))
ax = fig.add_subplot(111, projection='3d')
ax.set_box_aspect((1, 3.5, 1))
ax.view_init(15, 35)
ls = mpl.colors.LightSource(azdeg=30, altdeg=10)
# Making the intervals in the axes match with their respective entries
ax.xaxis.set_ticks(x + 0.5/2.)
ax.yaxis.set_ticks(y + 0.5/2.)
# Renaming the ticks as they were before
ax.xaxis.set_ticklabels(xlabels)
ax.yaxis.set_ticklabels(ylabels)
# Labeling the 3 dimensions
ax.set_xlabel('X label')
ax.set_ylabel('Y label')
ax.set_zlabel('Z label')
# Choosing the range of values to be extended in the set colormap
values = np.linspace(0.2, 1., x_M.ravel().shape[0])
# Selecting an appropriate colormap
colors = ['#FFC04C', 'blue', '#3e9a19',
'#599be5','#bf666f','#a235bf','#848381','#fb90d6','#fb9125']
# Increase the number of segment to 3 by changing the X in 'range(X)' to 3.
for i in range(3):
ax.bar3d(x_M.ravel(), y_M.ravel(), _zpos, dx=0.2, dy=0.1, dz=dz[i],
color=colors[i], lightsource=ls)
_zpos += dz[i]
Segment1_proxy = plt.Rectangle((0, 0), 1, 1, fc="#FFC04C")
Segment2_proxy = plt.Rectangle((0, 0), 1, 1, fc="blue")
Segment3_proxy = plt.Rectangle((0, 0), 1, 1, fc="#3e9a19")
ax.legend([Segment1_proxy,
Segment2_proxy,
Segment3_proxy],['Segment1',
'Segment2',
'Segment3'
])
plt.show()
Upvotes: 2