Reputation: 3432
Hello everyone I would need help in order to to fusionnate columns containt when there is a specific grep value inside.
Here is an exemple
Species COL1 COL2 COL3 COL4 COL5
SPf_1 4 f_G1 None None None
SP1 9 -_Haploviric -_unclassified f_G3 None
SP1 36 k_Orthorn f_G7 None None
SP2 90 k_Orthorn f_G3 p_Pisuvi None
SP3 32 None None None f_83
SP3 2 -_Ribovi Cattus None None
SP4 89 None None None None
and then I would like to add a new column called F_COL where I put for each row the cell content with a f_ pattern
on it. Note (I only have to check of COL1-5
but not Species
columns that can have f_ patterns also).
I should get :
Species COL1 COL2 COL3 COL4 COL5 F_COL
SPf_1 4 f_G1 None None None f_G1
SP1 9 -_Haploviric -_unclassified f_G3 None f_G3
SP1 36 k_Orthorn f_G7 None None f_G7
SP2 90 k_Orthorn f_G3 p_Pisuvi None f_G3
SP3 32 None None None f_83 f_83
SP3 2 -_Ribovi Cattus None None NA
SP4 89 None None None None NA
Does someone have an idea please ?
Here is the data in dictionnary format :
{'Species': {0: 'SPf_1', 1: 'SP1', 2: 'SP1', 3: 'SP2', 4: 'SP3', 5: 'SP3', 6: 'SP4'}, 'COL1': {0: 4, 1: 9, 2: 36, 3: 90, 4: 32, 5: 2, 6: 89}, 'COL2': {0: 'f_G1', 1: '-_Haploviric-', 2: 'k_Orthorn', 3: 'k_Orthorn', 4: 'None', 5: '-_Ribovi', 6: 'None'}, 'COL3': {0: 'None', 1: '_unclassified', 2: 'f_G7', 3: 'f_G3', 4: 'None', 5: 'Cattus', 6: 'None'}, 'COL4': {0: 'None', 1: 'f_G3', 2: 'None', 3: 'p_Pisuvi', 4: 'None', 5: 'None', 6: 'None'}, 'COL5': {0: 'None', 1: 'None', 2: 'None', 3: 'None', 4: 'f_83', 5: 'None', 6: 'None'}}
Upvotes: 2
Views: 52
Reputation: 71689
Let us filter
and stack
the columns from COL1
to COL5
, then extract
the f_pattern
strings followed by groupby
+ first
on level=0
df.filter(regex='COL[1-5]').stack()\
.str.extract(r'^(f_.*)', expand=False).groupby(level=0).first()
0 f_G1
1 f_G3
2 f_G7
3 f_G3
4 f_83
5 None
6 None
dtype: object
Upvotes: 5
Reputation: 4426
import re
def get_f_pattern(row):
for value in row.values:
if isinstance(value, str) and re.match(r'f_\w{2}', value):
return value
return 'NA'
df['F_COL'] = df.apply(get_f_pattern, axis=1)
df
Species COL1 COL2 COL3 COL4 COL5 F_COL
0 SPf_1 4 f_G1 None None None f_G1
1 SP1 9 -_Haploviric- _unclassified f_G3 None f_G3
2 SP1 36 k_Orthorn f_G7 None None f_G7
3 SP2 90 k_Orthorn f_G3 p_Pisuvi None f_G3
4 SP3 32 None None None f_83 f_83
5 SP3 2 -_Ribovi Cattus None None NA
6 SP4 89 None None None None NA
This creates a function that given a row, run over all of its value and returns the first f_pattern it matches, otherwise 'NA'
Then we run .apply
with axis=1
to tell pandas to apply this function on all rows and assign the result to F_COL
Upvotes: 1