Reputation: 548
I have been studying AI and ML for the last couple of month now and finally I am studying neural nets. Great! The problem is that when I follow a tutorial everything seems to be OK, but when I try to implement a NN by my self I always face issues related to the size of the tensors.
I have seem the answer to other questions (like this one) but they face the exact problem of the post. I am not looking for a code to just copy and paste. I want to understand why I am facing this problem, how to handle it and avoid it.
/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/modules/loss.py:528: UserWarning: Using a target size (torch.Size([16, 2])) that is different to the input size (torch.Size([9, 2])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
return F.mse_loss(input, target, reduction=self.reduction)
Traceback (most recent call last):
File "nn_conv.py", line 195, in
loss = loss_function(outputs, targets)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 528, in forward
return F.mse_loss(input, target, reduction=self.reduction)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/functional.py", line 2928, in mse_loss
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/functional.py", line 74, in broadcast_tensors
return _VF.broadcast_tensors(tensors) # type: ignore
RuntimeError: The size of tensor a (9) must match the size of tensor b (16) at non-singleton dimension 0
import os
import cv2
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class DogsVSCats():
IMG_SIZE = 50
CATS = 'PetImages/Cat'
DOGS = 'PetImages/Dog'
LABELS = {CATS: 0, DOGS: 1}
training_data = []
cats_count = 0
dogs_count = 0
def make_training_data(self):
for label in self.LABELS.keys():
for f in tqdm(os.listdir(label)):
try:
path = os.path.join(label, f)
# convert image to grayscale
img = cv2.imread(path)
if img is not None:
height, width = img.shape[:2]
if width > height:
height = round((height * self.IMG_SIZE) / width)
width = self.IMG_SIZE
right = 0
bottom = self.IMG_SIZE - height
else:
width = round((width * self.IMG_SIZE) / height)
height = self.IMG_SIZE
right = self.IMG_SIZE - width
bottom = 0
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.resize(img, (width, height))
img = cv2.copyMakeBorder(img,
top=0,
bottom=bottom,
left=0,
right=right,
borderType=cv2.BORDER_CONSTANT)
# Add a One-hot-vector of label of the image to self.training_data
self.training_data.append([np.array(img), np.eye(len(self.LABELS))[self.LABELS[label]]])
if label == self.CATS:
self.cats_count += 1
elif label == self.DOGS:
self.dogs_count += 1
except cv2.error as e:
pass
np.random.shuffle(self.training_data)
np.save("PetImages/training_data.npy", self.training_data)
print("Cats:", self.cats_count)
print("Dogs:", self.dogs_count)
training_data = np.load('PetImages/training_data.npy', allow_pickle=True)
plt.imsave('PetImages/trained_example.png', training_data[1][0])
class RunningMetrics():
def __init__(self):
self._sum = 0
self._count = 0
def __call__(self):
return self._sum/float(self._count)
def update(self, val, size):
self._sum += val
self._count += size
class Net(nn.Module):
def __init__(self, num_channels, conv_kernel_size=3, stride=1, padding=1, max_pool_kernel_size=2):
super(Net, self).__init__()
self._num_channels = num_channels
self._max_pool_kernel_size = max_pool_kernel_size
self.conv1 = nn.Conv2d(1, self._num_channels, conv_kernel_size, stride, padding)
self.conv2 = nn.Conv2d(self._num_channels, self._num_channels*2, conv_kernel_size, stride, padding)
self.conv3 = nn.Conv2d(self._num_channels*2, self._num_channels*4, conv_kernel_size, stride, padding)
# Calc input of first
self.fc1 = nn.Linear(self._num_channels*4*8*8, self._num_channels*8)
self.fc2 = nn.Linear(self._num_channels*8, 2)
def forward(self, x):
# Conv
x = self.conv1(x)
x = F.relu(F.max_pool2d(x, self._max_pool_kernel_size))
x = self.conv2(x)
x = F.relu(F.max_pool2d(x, self._max_pool_kernel_size))
x = self.conv3(x)
x = F.relu(F.max_pool2d(x, self._max_pool_kernel_size))
# Flatten
x = x.view(-1, self._num_channels*4*8*8)
# Fully Connected
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
# return F.log_softmax(x, dim=1)
return F.softmax(x, dim=1)
def save_model(path):
torch.save(save, path)
def load_model(path):
self = torch.load(PATH)
self.eval()
if __name__ == '__main__':
print('Loading dataset')
if not os.path.exists("PetImages/training_data.npy"):
dogsvcats = DogsVSCats()
dogsvcats.make_training_data()
training_data = np.load('PetImages/training_data.npy', allow_pickle=True)
print('Loading Net')
net = Net(num_channels=32)
# net = net.to(device)
# optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9 )
optimizer = optim.Adam(net.parameters(), lr=0.001)
# loss_function = nn.NLLLoss()
loss_function = nn.MSELoss()
print('Converting X tensor')
X = torch.Tensor([i[0] for i in training_data]).view(-1, 50, 50)
X = X/255.0
print('Converting Y tensor')
y = torch.Tensor([i[1] for i in training_data])
# Validation data
VAL_PERCENT = 0.1
val_size = int(len(X)*VAL_PERCENT)
X_train = X[:-val_size]
y_train = y[:-val_size]
X_test = X[-val_size:]
y_test = y[-val_size:]
print('Training Set:', len(X_train))
print('Testing Set:', len(X_test))
BATCH_SIZE = 16
EPOCHS = 2
IMG_SIZE=50
for epoch in range(EPOCHS):
print(f'Epoch {epoch+1}/{EPOCHS}')
running_loss = RunningMetrics()
running_acc = RunningMetrics()
for i in tqdm(range(0, len(X_train), BATCH_SIZE)):
inputs = X_train[i:i+BATCH_SIZE].view(-1,1, IMG_SIZE, IMG_SIZE)
targets = y_train[i:i+BATCH_SIZE]
# inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
_, preds = torch.max(outputs, 1)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
running_loss.update(loss.item()*BATCH_SIZE,
BATCH_SIZE)
running_acc.update(toch.sum(preds == targets).float(),
BATCH_SIZE)
print(f'Loss: {running_loss:.4f}, Acc: {running_acc:.4f}')
print('-'*10)
I am using the Microsoft's dataset of cats and dogs images
The error previous message has been solved following Anonymous' advice but now I am getting another error:
Traceback (most recent call last):
File "nn_conv.py", line 203, in
running_acc.update(torch.sum(preds == targets).float(),
RuntimeError: The size of tensor a (16) must match the size of tensor b (2) at non-singleton dimension 1
Upvotes: 0
Views: 3052
Reputation:
Input : 16 x 1 x 50 x 50
After conv1/maxpool1 : 16 x 32 x 25 x 25
After conv2/maxpool2 : 16 x 64 x 12 x 12 (no padding so taking floor)
After conv3/maxpool3 : 16 x 128 x 6 x 6 (=73 728 neurons here is your error)
Flattening : you specified a view like -1 x 32 * 4 * 8 * 8 = 9 x 8192
The correct flattening is -1 x 32 * 4 * 6 * 6
Few tips :
Upvotes: 1