Reputation: 145
I am using python 3.6.8.
I was using the loop to convert the values in some columns as int:
for i in cols:
df_valid[[i]] = df_valid[[i]].astype(int)
for which the given error was shown.
error:
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices
As displayed by the full code below, I used the same thing with df_train. But, it didn't generate any error. I think it has to do something with
df_valid = imputer.transform(df_valid)
. But, I am not able to resolve it.
Can you please help and provide direction for solving this error.
My full code is as shown below:
import argparse
import os
import joblib
import pandas as pd
from sklearn.impute import KNNImputer
from sklearn import metrics
import config
import model_dispatcher
def run(fold, model):
df = pd.read_csv(config.TRAINING_FILE)
df["Gender"] = df["Gender"].map({"Male": 1, "Female": 0})
df["Married"] = df["Married"].map({"No": 0, "Yes": 1})
df["Self_Employed"] = df["Self_Employed"].map({"No": 0, "Yes": 1})
df["Dependents"] = df["Dependents"].map({"0": 0, "1": 1, "2": 2, "3+": 3})
df["Education"] = df["Education"].map({"Graduate": 1, "Not Graduate": 0})
df["Loan_Status"] = df["Loan_Status"].map({"N": 0, "Y": 1})
cols = ["Gender",
"Married",
"Dependents",
"Education",
"Self_Employed",
"Credit_History",
"Loan_Status"]
dummy = pd.get_dummies(df["Property_Area"])
df = pd.concat([df, dummy], axis=1)
df = df.drop(["Loan_ID", "Property_Area"], axis=1)
df_train = df[df.kfold != fold].reset_index(drop=True)
df_valid = df[df.kfold == fold].reset_index(drop=True)
imputer = KNNImputer(n_neighbors=18)
df_train = pd.DataFrame(imputer.fit_transform(df_train),
columns=df_train.columns)
for i in cols:
df_train[[i]] = df_train[[i]].astype(int)
df_valid = imputer.transform(df_valid)
for i in cols:
df_valid[[i]] = df_valid[[i]].astype(int)
df_train['GxM'] = df_train.apply(lambda row:
(row['Gender']*row['Married']),
axis=1)
df_train['Income_sum'] = (
df_train.apply(lambda row:
(row['ApplicantIncome'] +
row['CoapplicantIncome']),
axis=1))
df_train['DxE'] = df_train.apply(lambda row: (row['Education'] *
row['Dependents']),
axis=1)
df_train['DxExG'] = (
df_train.apply(lambda row:
(row['Education'] *
row['Dependents'] *
row['Gender']),
axis=1))
df_valid['GxM'] = df_valid.apply(lambda row:
(row['Gender']*row['Married']),
axis=1)
df_valid['Income_sum'] = (
df_valid.apply(lambda row:
(row['ApplicantIncome'] +
row['CoapplicantIncome']),
axis=1))
df_valid['DxE'] = df_valid.apply(lambda row: (row['Education'] *
row['Dependents']),
axis=1)
df_valid['DxExG'] = (
df_valid.apply(lambda row:
(row['Education'] *
row['Dependents'] *
row['Gender']),
axis=1))
X_train = df_train.drop("Loan_Status", axis=1).values
y_train = df_train.Loan_Status.values
X_valid = df_valid.drop("Loan_Status", axis=1).values
y_valid = df_valid.Loan_Status.values
clf = model_dispatcher.models[model]
clf.fit(X_train, y_train)
preds = clf.predict(X_valid)
rascore = metrics.roc_auc_score(y_valid, preds)
print(f"Fold = {fold}, ROC-AUC = {rascore}")
joblib.dump(
clf,
os.path.join(config.MODEL_OUTPUT, f"dt_{fold}.bin")
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fold", type=int)
parser.add_argument("--model", type=str)
args = parser.parse_args()
run (fold=args.fold, model=args.model)
Upvotes: 1
Views: 89
Reputation: 8508
To convert all the columns to integer format, you can just give:
df_valid.apply(pd.to_numeric).dtypes
For more details on pd.to_numeric, see documentation
You may also want to read more about converting data to different datatypes in this Stack Overflow response
Upvotes: 2